Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur





**Department of Mechanical Engineering** 

Curriculum and Syllabus for T.Y. B. Tech. Mechanical Engineering With Effect from: 2025-26 (As Per NEP)



Dr. U. S. Bhapkar Head of Mechanical Engg. Institute of Technology's Engineering (Autonomous, Kolhanu



| Semest | TER V                                          |             |                                                  |   |   |   |        |         |             |          |       |             |    |    |    |
|--------|------------------------------------------------|-------------|--------------------------------------------------|---|---|---|--------|---------|-------------|----------|-------|-------------|----|----|----|
| Sr.    | Catagory                                       | Course Code | Course Name                                      | т | т | P | Hrs. / | Cradits | Evalu       | ation S  | cheme | e           |    |    |    |
| No.    | Category                                       | Course Coue | Course Ivanie                                    | L | 1 | 1 | Week   | Creuits | Component   | N        | 1arks |             |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         | ICE1        | Max      | Mi    | in          |    |    |    |
| 1      |                                                |             |                                                  |   |   |   |        |         | MSE         | 30       |       |             |    |    |    |
|        | PC                                             | UMEPC0501   | Design of Machine Elements                       | 3 | 0 | 0 | 3      | 3       | ISE2        | 10       |       | 40          |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         | ESE         | 50       | 20    |             |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         | ISE1        | 10       |       |             |    |    |    |
| 2      | PC                                             | UMEPC0502   | Mechanical Vibrations                            | 2 | 0 | 0 | 2      | 2       | MSE         | 30       |       | 40          |    |    |    |
|        |                                                |             | Wiechaniear vibrations                           |   |   |   |        |         | ISE2        | 10       | 20    |             |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         |             |          |       | LSE<br>ISF1 | 10 | 20 |    |
|        |                                                |             |                                                  |   |   |   |        |         | MSE         | 30       |       |             |    |    |    |
| 3      | PC                                             | UMEPC0503   | Heat Transfer                                    | 3 | 0 | 0 | 3      | 3       | 3           | 3        | 3     | ISE2        | 10 |    | 40 |
|        |                                                |             |                                                  |   |   |   |        |         | ESE         | 50       | 20    |             |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         | ISE1        | 10       |       |             |    |    |    |
| 4      | PEC                                            | UMEPE051*   | Due cuerre Elective I                            | 2 | 0 | 0 | 3      | 3       | MSE         | 30<br>10 |       | 40          |    |    |    |
| -      | 120                                            |             | Program Elective-1                               | 3 | 0 | 0 | 5      | Ū.      | ISE2        | 10       | 20    |             |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         | ESE<br>ISE1 | <u> </u> | 20    |             |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         |             | MSE      | 30    |             |    |    |    |
| 5      | OE                                             | UMEOE052*   | Open Elective-I                                  | 3 | 0 | 0 | 3      | 3       | ISE2        | 10       |       | 40          |    |    |    |
|        |                                                |             |                                                  |   |   |   |        |         | ESE         | 50       | 20    |             |    |    |    |
| 6      | HSSM                                           | UMEEM0504   | Supply Chain Management                          | 2 | 0 | 0 | 2      | 2       | ESE         | 50       | 20    | 0           |    |    |    |
| 7      | DC                                             | UMEDC0521   | Heat Transfer Laboratory                         | 0 | 0 | 2 | 2      | 1       | ISE         | 25       | 10    | 0           |    |    |    |
| /      | FC                                             | OWIEFC0331  |                                                  | 0 | 0 | 2 | 2      | 1       | ESE(POE)    | 25       | 10    | 0           |    |    |    |
| 8      | PC                                             | LIMEDC0532  | Mechanical Vibrations                            | 0 | 0 | 2 | 2      | 1       | ISE         | 25       | 10    | 0           |    |    |    |
| 0      | IC                                             | OWIEI C0332 | Laboratory                                       | 0 | 0 | 2 | 2      | 1       | ESE(POE)    | 25       | 10    | 0           |    |    |    |
| 9      | VSEC                                           | UMEVS0533   | Advanced Automobile<br>Engineering<br>Laboratory | 0 | 0 | 2 | 2      | 1       | ISE         | 25       | 10    | 0           |    |    |    |
| 10     | FP                                             | UMEIL0571   | Community Engagement<br>Project                  | 0 | 0 | 2 | 2      | 1       | ISE         | 25       | 10    | 0           |    |    |    |
| 11     | MM                                             | UMEMM054*   | Multi Disciplinary Minor                         | 3 | 0 | 0 | 3      | 3       | ESE         | 100      | 40    | 0           |    |    |    |
|        | Total:2723Total Marks: 800<br>Total Credit: 23 |             |                                                  |   |   |   |        |         |             |          |       |             |    |    |    |

| Seme       | STER VI  |                |                                                |           |   |   |          |         |             |          |       |     |
|------------|----------|----------------|------------------------------------------------|-----------|---|---|----------|---------|-------------|----------|-------|-----|
| <b>S</b>   |          |                |                                                |           |   |   | Hrs. /   |         | Evalua      | tion Scl | heme  | :   |
| Sr.<br>No. | Category | Course Code    | Course Name                                    | L         | Т | Р | Wee<br>k | Credits | ~           | Μ        | larks |     |
|            |          |                |                                                |           |   |   |          |         | Component   | Max      | Μ     | lin |
|            |          |                |                                                |           |   |   |          |         | ISE1        | 10       |       |     |
| 1          | PC       | UMEPC0601      | Power Plant                                    | 3         | 0 | 0 | 3        | 3       | MSE         | 30       |       | 40  |
| -          | 10       | 00001          | Engineering                                    | 5         | Ŭ | Ŭ | U        | Ũ       | ISE2        | 10       |       |     |
|            |          |                |                                                |           |   |   |          |         | ESE         | 50       | 20    |     |
|            |          |                |                                                |           |   |   |          |         | ISE1        | 10       |       |     |
| 2          | PC       | UMEPC0602      | Finite Element                                 | 3         | 0 | 0 | 3        | 3       | MSE         | 30       |       | 40  |
|            |          |                | Analysis                                       |           | - | _ | _        |         | ISE2        | 10       | •     |     |
|            |          |                |                                                |           |   |   |          |         | ESE         | 50       | 20    |     |
|            |          |                |                                                |           |   |   |          |         | ISEI        | 10       |       |     |
| 3          | PC       | UMEPC0603      | Mechatronics                                   | 2         | 0 | 0 | 2        | 2       | MSE         | 30       |       | 40  |
|            |          |                |                                                |           |   |   |          |         | ISE2        | 10       | 20    |     |
|            |          |                |                                                |           |   |   |          |         | ESE<br>ISE1 | 50       | 20    |     |
|            |          |                |                                                |           |   |   |          |         | ISEI        | 10       | -     | 40  |
| 4          | PEC      | UMEPE061*      | Program Elective-II                            | 3         | 0 | 0 | 3        | 3       | MSE<br>ISE2 | 30       | -     | 40  |
|            |          |                |                                                |           |   |   |          |         | ISE2        | 10       | 20    |     |
|            |          |                |                                                |           |   |   |          |         | ESE<br>ISE1 | 10       | 20    |     |
|            |          |                |                                                |           |   |   |          | 3       | MSE         | 20       |       | 40  |
| 5          | OE       | UMEOE062*      | Open Elective- II                              | 3         | 0 | 0 | 3        |         | MSE<br>ISE2 | 30       | -     | 40  |
|            |          |                |                                                |           |   |   |          |         | ISE2<br>FSF | 50       | 20    |     |
| 6          | AEC      | UMEAE0604      | Business<br>Communication and<br>Value Science | 0         | 0 | 2 | 2        | 1       | ISE         | 50       | 20    | 20  |
|            |          |                | Power Plant                                    |           |   |   |          |         | ISE         | 25       | 1     | 0   |
| 7          | PC       | UMEPC0631      | Engineering<br>Laboratory                      | 0         | 0 | 2 | 2        | 1       | ESE(POE)    | 25       | 1     | 0   |
| 8          | PC       | UMEPC0632      | Finite Element<br>Analysis Laboratory          | 0         | 0 | 2 | 2        | 1       | ISE         | 25       | 1     | 0   |
| 0          | DC       |                | Mechatronics                                   | 0         | 0 | n | 2        | 1       | ISE         | 25       | 1     | 0   |
| 9          | IC       | UMEFC0033      | Laboratory                                     | 0         | 0 | 2 | 2        | 1       | ESE(POE)    | 25       | 1     | 0   |
| 10         | FP       | UMEIL1071      | CAD/CAM/CAE<br>Laboratory                      | 0         | 0 | 2 | 2        | 1       | ISE         | 25       | 1     | 0   |
| 11         | CC       | UMECC0634      | Co-Curricular<br>Activities-III                | 0         | 0 | 2 | 2        | 1       | ISE         | 50       | 2     | 20  |
| 12         | MM       | UMEMM064*      | Multi Disciplinary<br>Minor                    | 3         | 0 | 0 | 3        | 3       | ESE         | 100      | 4     | 0   |
|            |          | Total<br>Total | Marks:<br>Credit:                              | 850<br>23 |   |   |          |         |             |          |       |     |

## **Program Electives:**

| Pro        | PROGRAM ELECTIVE -1 |                              |   |    |      |                |         |  |  |  |  |
|------------|---------------------|------------------------------|---|----|------|----------------|---------|--|--|--|--|
| Sr.<br>No. | Course<br>Code      | Course Name                  | L | Т  | Р    | Hrs. /<br>Week | Credits |  |  |  |  |
| 1          | UMEPE0511           | Automobile and EV Technology | 3 | 0  | 0    | 3              | 3       |  |  |  |  |
| 2          | UMEPE0512           | Tribology                    | 3 | 0  | 0    | 3              | 3       |  |  |  |  |
| 3          | UMEPE0513           | Machine Tool Design          | 3 | 0  | 0    | 3              | 3       |  |  |  |  |
| 4          | UMEPE0514           | Design Thinking              | 3 | 0  | 0    | 3              | 3       |  |  |  |  |
|            |                     |                              |   | To | tal: | 3              | 3       |  |  |  |  |

| Pro        | PROGRAM ELECTIVE-II |                                             |   |    |      |                |         |  |  |  |
|------------|---------------------|---------------------------------------------|---|----|------|----------------|---------|--|--|--|
| Sr.<br>No. | Course<br>Code      | Course Name                                 | L | Т  | Р    | Hrs. /<br>Week | Credits |  |  |  |
| 1          | UMEPE0611           | Fault Diagnosis and Condition<br>Monitoring | 3 | 0  | 0    | 3              | 3       |  |  |  |
| 2          | UMEPE0612           | Metal Forming and Joining<br>Technology     | 3 | 0  | 0    | 3              | 3       |  |  |  |
| 3          | UMEPE0613           | Advanced Automobile Design*(Tata Tech)      | 3 | 0  | 0    | 3              | 3       |  |  |  |
| 4          | UMEPE0614           | Introduction to CFD                         | 3 | 0  | 0    | 3              | 3       |  |  |  |
|            |                     |                                             |   | То | tal: | 3              | 3       |  |  |  |

## **Multi Disciplinary Minor Courses**

# Track: Major in Mechanical Engineering with Minor in Artificial Intelligence and Machine Learning

| Sr.<br>No. | Course Code | Course Name                                  | L | Т  | Р    | Hrs. /<br>Week | Credits |
|------------|-------------|----------------------------------------------|---|----|------|----------------|---------|
| 1          | UMEMM0541   | Python for Machine Learning and Data Science | 3 | 0  | 0    | 3              | 3       |
| 2          | UMEMM0641   | Data Visualization and Analysis              | 3 | 0  | 0    | 3              | 3       |
|            |             |                                              |   | To | tal: | 14             | 14      |

## **Multi Disciplinary Minor Courses**

## **Track :Major in Mechanical Engineering with Minor in Electrical and Electronics Technology**

| Sr.<br>No. | Course Code | Course Name                      | L | Т   | Р    | Hrs. /<br>Week | Credits |
|------------|-------------|----------------------------------|---|-----|------|----------------|---------|
| 1          | UMEMM0542   | Signal and Image Processing      | 3 | 0   | 0    | 3              | 3       |
| 2          | UMEMM0642   | Micro Electro Mechanical Systems | 3 | 0   | 0    | 3              | 3       |
|            |             |                                  |   | Tot | tal: | 14             | 14      |

| Mult       | Multi Disciplinary Minor Courses                                            |                                |   |    |      |                |         |  |  |
|------------|-----------------------------------------------------------------------------|--------------------------------|---|----|------|----------------|---------|--|--|
| Trac       | Track : Major in Mechanical Engineering with Minor in Automotive Technology |                                |   |    |      |                |         |  |  |
| Sr.<br>No. | Course<br>Code                                                              | Course Name                    | L | Т  | Р    | Hrs. /<br>Week | Credits |  |  |
| 1          | UMEMM0543                                                                   | Electrical and Hybrid Vehicles | 3 | 0  | 0    | 3              | 3       |  |  |
| 2          | UMEMM0643                                                                   | Energy Storage Devices         | 3 | 0  | 0    | 3              | 3       |  |  |
|            |                                                                             |                                |   | To | tal: | 14             | 14      |  |  |

| Eme        | Emerging Minor Courses                    |                                    |   |    |      |                |         |  |  |
|------------|-------------------------------------------|------------------------------------|---|----|------|----------------|---------|--|--|
| Trac       | Track: Emerging Minor in Green Technology |                                    |   |    |      |                |         |  |  |
| Sr.<br>No. | Course Code                               | Course Name                        | L | Т  | Р    | Hrs. /<br>Week | Credits |  |  |
| 1          | UMEMN0561                                 | Energy Conservation and Management | 3 | 1  | 0    | 4              | 4       |  |  |
| 2          | UMEMN0661                                 | Sustainable Engineering            | 3 | 1  | 0    | 4              | 4       |  |  |
|            |                                           |                                    |   | To | tal: | 20             | 18      |  |  |

| B Tech Honors(Core Engineering Domain) (Robotics) |                |                                         |   |   |   |                |         |  |  |
|---------------------------------------------------|----------------|-----------------------------------------|---|---|---|----------------|---------|--|--|
| Sr.<br>No.                                        | Course<br>Code | Course Name                             | L | Т | Р | Hrs. /<br>Week | Credits |  |  |
| 1                                                 | UMEHN0551      | Programming and Simulation for Robotics | 3 | 1 | 0 | 4              | 4       |  |  |
| 2                                                 | UMEHN0651      | Robot Kinematics and Dynamics           | 3 | 1 | 0 | 4              | 4       |  |  |
|                                                   |                | Fotal:                                  | 8 | 8 |   |                |         |  |  |

|            |                | <b>OPEN ELECTIVE-I</b>           |   |   |   |                |         |
|------------|----------------|----------------------------------|---|---|---|----------------|---------|
| Sr.<br>No. | Course<br>Code | Course Name                      | L | Т | Р | Hrs. /<br>Week | Credits |
| 1          | UMEOE0521      | Product Design and Manufacturing | 3 | - | - | 3              | 3       |

|            |                | <b>OPEN ELECTIVE-II</b>      |   |   |   |                |         |
|------------|----------------|------------------------------|---|---|---|----------------|---------|
| Sr.<br>No. | Course<br>Code | Course Name                  | L | Т | Р | Hrs. /<br>Week | Credits |
| 1          | UMEOE0621      | Intellectual Property        | 3 | - | - | 3              | 3       |
| 2          | UMEOE0622      | Entrepreneurship Development | 3 | - | - | 3              | 3       |
| 3          | UMEOE0623      | Six Sigma                    | 3 | - | - | 3              | 3       |

| EXIT COURSES-THIRD YEAR (B.VOC.) |                |                     |   |    |      |                |         |  |  |  |
|----------------------------------|----------------|---------------------|---|----|------|----------------|---------|--|--|--|
| Sr.<br>No.                       | Course<br>Code | Course Name         | L | Т  | Р    | Hrs. /<br>Week | Credits |  |  |  |
| 1                                | UMEEX0691      | CAD/CAM/CAE         | 3 | 0  | 0    | 3              | 3       |  |  |  |
| 2                                | UMEEX0692      | Quality Managment   | 3 | 0  | 0    | 3              | 3       |  |  |  |
| 3                                | UMEEX0693      | Vocational Training | 0 | 0  | 4    | 4              | 2       |  |  |  |
|                                  |                |                     |   | To | tal: | 10             | 8       |  |  |  |

| Title o    | f the Course: Design of Machine Elements                                                                 | L      | Т       | Р       | Credit       |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------|--------|---------|---------|--------------|--|--|--|--|--|--|
| Cours      | e Code: UMEPC0501                                                                                        | 3      |         |         | 3            |  |  |  |  |  |  |
| Course     | Course Pre-Requisite:                                                                                    |        |         |         |              |  |  |  |  |  |  |
| 1. Anal    | 1. Analysis of Mechanical Elements, 2. Kinematics of Mechanics, 3. Engineering Mathematics               |        |         |         |              |  |  |  |  |  |  |
| Course     | Course Description: Design of Machine Elements course aims to design the mechanical elements as          |        |         |         |              |  |  |  |  |  |  |
| per the    | per the requirement to accomplish the objective of task. The design Engineer requires selecting standard |        |         |         |              |  |  |  |  |  |  |
| compor     | nents such as rolling contact bearings and sliding contact bearings                                      | s. The | know    | ledge   | of Machine   |  |  |  |  |  |  |
| design     | will enable students to understand the procedures of selection of be                                     | earing | s, desi | gn the  | mechanical   |  |  |  |  |  |  |
| compor     | nents against fluctuating load. By applying the basic principles of n                                    | nachin | e desig | gn stuc | lents should |  |  |  |  |  |  |
| be able    | to design the Machine Elements like Shaft, Gears, Couplings, Weld                                        | ded an | d Bolt  | ed joir | nts.         |  |  |  |  |  |  |
| Cours      | e Objectives:                                                                                            |        |         |         |              |  |  |  |  |  |  |
| 1. To st   | udy fundamental principles in design of machine elements.                                                |        |         |         |              |  |  |  |  |  |  |
| 2. To le   | arn to use of design data book for design of machine elements.                                           |        |         |         |              |  |  |  |  |  |  |
| 3. To le   | 3. To learn to select machine elements from manufacturer's catalogue.                                    |        |         |         |              |  |  |  |  |  |  |
| 4. To d    | 4. To design of components subjected to dynamic load and static loading.                                 |        |         |         |              |  |  |  |  |  |  |
| 5. To a    | nalyze the gears with respect to strength point of view.                                                 |        |         |         |              |  |  |  |  |  |  |
| 6. To m    | heasure design parameters of mechanical systems.                                                         |        |         |         |              |  |  |  |  |  |  |
| Cours      | e Learning Outcomes:                                                                                     |        |         |         |              |  |  |  |  |  |  |
| CO         | After the completion of the course the student should be                                                 | H      | Bloom   | 's Cog  | nitive       |  |  |  |  |  |  |
|            | able to                                                                                                  |        |         |         |              |  |  |  |  |  |  |
|            |                                                                                                          | 1      | evel    | Desc    | riptor       |  |  |  |  |  |  |
| CO1        | Explain fundamental principles of fatigue and stre                                                       | ess    | 2       | Unde    | erstanding   |  |  |  |  |  |  |
|            | concentration in design of components                                                                    |        |         |         |              |  |  |  |  |  |  |
| CO2        | Identify parameters required for design of mechanic                                                      | cal    | 3       | Ap      | oplying      |  |  |  |  |  |  |
|            | Components.                                                                                              |        |         |         |              |  |  |  |  |  |  |
| CO3        | Determine the design parameters of mechanical components.                                                |        | 4       | Eva     | aluating     |  |  |  |  |  |  |
| <b>CO4</b> | <b>D4</b> Design of power transmission elements <b>5</b> Creating                                        |        |         |         |              |  |  |  |  |  |  |
|            | CO4 Design of power transmission elements 5 Creating                                                     |        |         |         |              |  |  |  |  |  |  |
| CO-PO      | ) Manning:                                                                                               | I      |         |         |              |  |  |  |  |  |  |
|            | a mahhme.                                                                                                |        |         |         |              |  |  |  |  |  |  |
| G          | DOIs                                                                                                     |        | Т       | SOL     |              |  |  |  |  |  |  |

| Course   |   |   |   |   |   | PO's |   |   |   |    |    |   | PSO's |   |
|----------|---|---|---|---|---|------|---|---|---|----|----|---|-------|---|
| Outcomes | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 1 | 2     | 3 |
| CO1      | 2 | 2 | 3 | 3 |   |      |   |   |   |    |    | 2 | 2     |   |
| CO2      | 2 | 2 | 3 | 3 |   |      |   |   |   |    |    | 2 | 2     |   |
| CO3      | 2 | 2 | 3 | 3 |   |      |   |   |   |    |    | 2 | 2     |   |
| CO4      | 2 | 3 | 2 | 2 |   |      |   | 1 |   | 1  |    | 2 | 2     |   |

# Assessments :

## **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment                                                                              | Marks                                        |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| ISE 1                                                                                   | 10                                           |  |  |  |  |  |  |
| MSE                                                                                     | 30                                           |  |  |  |  |  |  |
| ISE 2                                                                                   | 10                                           |  |  |  |  |  |  |
| ESE                                                                                     | 50                                           |  |  |  |  |  |  |
| ISE 1 and ISE 2 are based on assignment/decla                                           | red test/quiz/seminar/Group Discussions etc. |  |  |  |  |  |  |
| MSE: Assessment is based on 50% of course c                                             | ontent (Normally first three modules)        |  |  |  |  |  |  |
| ESE: Assessment is based on 100% course content with60-70% weightage for course content |                                              |  |  |  |  |  |  |
| (normally last three modules) covered after MSE                                         |                                              |  |  |  |  |  |  |

| Course Contents:                                                                         |                |  |  |  |
|------------------------------------------------------------------------------------------|----------------|--|--|--|
| Unit 1:- Theories of failure and Design against fluctuating load.                        | 08 Hrs.        |  |  |  |
| Introduction on material designation as per standards, Theories of failure, Stress       |                |  |  |  |
| concentration, fluctuating stresses, S-N Diagram under fatigue load, endurance limit,    |                |  |  |  |
| notch sensitivity, endurance strength- modifying factors, design for finite and infinite |                |  |  |  |
| life under reversed stresses. Soderberg and Goodman diagrams, modified Goodman           |                |  |  |  |
| diagram.                                                                                 |                |  |  |  |
| Unit 2: Design of Shafts Keys and Counlings                                              | 07 Hrs         |  |  |  |
| Design of shafts on the basis of strength Torsional rigidity and ASME code               | 07 111 5.      |  |  |  |
| Design of keys and Splines. Design of Muff and Flange Counlings                          |                |  |  |  |
| Unit 3: Design of Bolted and Welded Joints                                               | 07 Hrs         |  |  |  |
| Design of bolted joints subjected to Eccentric Loading- 1) In a plane containing bolts   | 07 111 5.      |  |  |  |
| 2) Perpendicular to the axis of bolt                                                     |                |  |  |  |
| Welding symbols Stresses in butt and fillet welds Strength of butt parallel and          |                |  |  |  |
| transverse fillet welds. Eccentric load in plane of welds. Welded joints subjected to    |                |  |  |  |
| bending moment                                                                           |                |  |  |  |
| Unit 4: Design of bearings                                                               | 07 Um          |  |  |  |
| Classification of boorings static and dynamic load connection. Stribush's equation       | 07 <b>mrs.</b> |  |  |  |
| Classification of bearings, static and dynamic load capacities, Stribeck's equation,     |                |  |  |  |
| equivalent bearing load, load- life relationship, Bearing life, Selection of bearing     |                |  |  |  |
| from manufactures catalogue. Ball and Roller bearing, Design for variable load and       |                |  |  |  |
| speed, Bearings with probability of survival other than 90%. Lubrication and             |                |  |  |  |
| mountings, dismounting and preloading of bearings, Introduction on Sliding contact       |                |  |  |  |
| bearing.                                                                                 |                |  |  |  |
| Unit 5: Design of Spur Gear and Helical Gear                                             | 10 Hrs.        |  |  |  |
| Spur Gear: Gear tooth loads, No. of teeth, face width, strength of gear teeth, static    |                |  |  |  |
| beam strength (Lewis equation), dynamic tooth load, wear strength (Buckingham's          |                |  |  |  |
| equation), Estimation of module based on beam strength and wear strength. Methods        |                |  |  |  |
| of gear lubrication.                                                                     |                |  |  |  |
| Terminology, Formative number of teeth in helical gears, force analysis, beam &          |                |  |  |  |
| wear strength of helical gears, effective load & design of helical gear.                 |                |  |  |  |
| Unit 6: Design of Worm and worm wheel Gear                                               | 06 Hrs.        |  |  |  |
| Terminology and geometrical relations. Standard dimensions and recommendation of         |                |  |  |  |
| worm gearing, Force analysis, Friction, Efficiency of worm gear drive, Design of         |                |  |  |  |
| worm drive as per IS 7443-1974 based on beam strength and wear strength rating,          |                |  |  |  |
| Thermal consideration in worm drive.                                                     |                |  |  |  |
| Textbooks:                                                                               |                |  |  |  |
| 1. Design of Machine Elements, Bhandari V. B Tata McGraw Hill New edition                |                |  |  |  |
| 2. Mechanical Engineering Design, Shigley J.E. and Mischke C.R McGraw Hill F             | Publ. Co.      |  |  |  |
| Ltd. 3. Machine Design, R.K.Jain, Khanna Publication.                                    |                |  |  |  |
| 4. Machine Design, Pandya Shah, Charotar Publication.                                    |                |  |  |  |
| 5. Machine Design, U.C.Jindal, Pearson Education.                                        |                |  |  |  |
| 6. Introduction to Machine design, V.B. Bhandari, Tata McGraw Hill Publication, 2 nd     | Edition        |  |  |  |
| Reference Books:                                                                         |                |  |  |  |
| 1. Machine Design – Black P.H. and O. Eugene Adams – McGraw Hill Book Co. Ltd.           |                |  |  |  |
| 2. Mechanical Design of Machinel, Maleev V.L., Hartman J.B, CBS Pub. & Distributor       | ·s,            |  |  |  |
| 3. Design Data Handbook – P.S.G. College of Technology, Coimbatore.                      |                |  |  |  |
| 4. Hall A.S.; Holowenko A.R. and Laughlin H.G. – —Theory and Problems of Machir          |                |  |  |  |
| Design Schaum's outline series.                                                          |                |  |  |  |
| 5. Machine Design, Hall, Holowenko Laughlin, Tata McGraw Hill Pub. Schaums               | Outline        |  |  |  |
| Series. 6. Design of Machine Element, M.F.Spotts, Pearson Education Publication. 6 th    | Edition.       |  |  |  |
|                                                                                          |                |  |  |  |

7. Machine Component Design, Robert C. Juvniall, Willey Ltd, 5th Edition.

8. Mechanical Design of Machine Elements and Machines, Jack A Collis Henry Busby, George StaabWiley ltd., 2nd Edition.

9. Machine Design, P. Kannaiah, Scitech Publication, 2 nd Edition.

10. Design Data Book, Mahadevan, CBS Publishers and Distributors Pvt Ltd, 4 th Edition.

| Title of the Course: MECHANICAL VIBRATIONS | L  | Т | Р | Credit |
|--------------------------------------------|----|---|---|--------|
| CourseCode:UMEPC0502                       | 02 | - | - | 02     |

CoursePre-Requisite: Basicsof mathematics, Physics, Analysis of Mechanical Elements, DynamicsofMachines

Course Description: Many practical applications need investigation of Vibration such asmachines, engines, turbines, structures, etc. Study of causes and effects of vibrations and analysis which is necessary to improve performance of system and to optimize the system at both design stage and application stage. The subject contains - Introduction to vibrations, Single Degree of freedom Free and Forced Vibrations, Vibration Measurement along with its Applications.

## **CourseObjectives:**

- 1. To carry out study of causes and effects of unbalance on Vibrations.
- 2. To take overviewofbasic conceptsofvibration analysis.
- 3. To studyvibrationanalysisofSingle degreeoffreedomsystems.
- 4. To acquaint students with the principles of vibration measuring instruments.

#### **CourseLearningOutcomes:**

| <b>CO</b> Afterthecompletion of the course the student should be able to |                                                     |        |        |        |         |         |        |                           | Bloom's Cognitive |         |        |         |         |         |     |
|--------------------------------------------------------------------------|-----------------------------------------------------|--------|--------|--------|---------|---------|--------|---------------------------|-------------------|---------|--------|---------|---------|---------|-----|
|                                                                          |                                                     |        |        |        |         |         |        |                           |                   |         | leve   | l Des   | criptor |         |     |
| CO1                                                                      | CO1 Explainfundamentalsof Balancing and Vibration o |        |        |        |         |         |        |                           | n of              | II      | Und    | lerstan | ding    |         |     |
|                                                                          | Mechanical systems.                                 |        |        |        |         |         |        |                           |                   |         |        |         |         |         |     |
| CO2                                                                      | Solv                                                | enum   | erical | ofnatı | ıralfre | equen   | cyofm  | nechar                    | nical s           | ystem.  |        | III     | App     | olying  |     |
| CO3                                                                      | Ana                                                 | alyzea | and te | st the | vibrat  | toryre  | spons  | eofme                     | echan             | icalsys | tem.   | IV      | Ana     | lyze    |     |
| CO4                                                                      | Dev                                                 | velopi | nathe  | matic  | almoc   | leltore | eprese | ntdyn                     | amics             | system  | •      | V       | Des     | ign     |     |
|                                                                          |                                                     |        |        |        |         | С       | O-PO   | Map                       | ping:             |         |        |         |         |         |     |
|                                                                          |                                                     |        |        |        |         |         |        |                           |                   |         |        |         |         |         |     |
| СО                                                                       | PO1                                                 | PO2    | PO3    | PO4    | PO5     | PO6     | PO7    | PO8                       | PO9               | PO10    | PO11   | PSO1    | PSO2    | PSO3    |     |
| C01                                                                      | 2                                                   | 1      | 0      | 0      | 0       | 0       | 0      | 0                         | 0                 | 0       | 1      | 1       | 0       | 0       |     |
| CO2                                                                      | 3                                                   | 2      | 1      | 1      | 1       | 0       | 0      | 0                         | 1                 | 0       | 2      | 0       | 0       | 0       |     |
| CO3                                                                      | 1                                                   | 2      | 1      | 3      | 3       | 0       | 0      | 0                         | 1                 | 1       | 2      | 2       | 2       | 1       |     |
| CO4                                                                      | 2                                                   | 2      | 2      | 2      | 1       | 2       | 1      | 0                         | 2                 | 1       | 2      | 2       | 2       | 1       | ſ   |
|                                                                          |                                                     |        |        |        |         |         |        |                           |                   |         |        |         |         |         |     |
| 1:low                                                                    | , 2:m                                               | ediun  | 1,3:hi | gh     |         |         |        |                           |                   |         |        |         |         |         |     |
| Assessr                                                                  | nents                                               | :      |        |        |         |         |        |                           |                   |         |        |         |         |         |     |
| Teach                                                                    | erAss                                               | sessm  | ent:   |        |         |         |        |                           |                   |         |        |         |         |         |     |
| Two o                                                                    | comp                                                | onent  | s of   | In Se  | emest   | er Ev   | aluati | on (l                     | SE),              | One 1   | Mid So | emeste  | er Exa  | iminati | on  |
| (MCE)                                                                    | anda                                                | noEnd  | 1Com   | ator   |         |         |        | $\mathbf{E}_{\mathbf{V}}$ | omin              | tion (E | CE)har | in ~ 20 | 0/ 200  | land50  | 0/. |

## (MSE)andoneEndSemester

Examination(ESE)having20%,30% and 50% weightsrespectively.

| Assessment | Marks |
|------------|-------|
| ISE1       | 10    |
| MSE        | 30    |
| ISE2       | 10    |
| ESE        | 50    |

| ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Disc           | cussions       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| etc.MSE:Assessment isbased on 50% of coursecontent (Normally firstthree Units)          |                |  |  |  |  |  |
| ESE:Assessmentisbased on100%course contentwith                                          |                |  |  |  |  |  |
| 70%weightageforcoursecontent(normallylast three units)covered after MSE.                |                |  |  |  |  |  |
| Course Contents:                                                                        |                |  |  |  |  |  |
| Unit 1: Balancing                                                                       |                |  |  |  |  |  |
| Static and Dynamic balancing of rotary and reciprocating masses. Primary and            | 08Hrs.         |  |  |  |  |  |
| Secondary forces and couples. Balancing of Single cylinder, Multi cylinder-             |                |  |  |  |  |  |
| Inline Engines. Function of flywheel and Study of turning moment diagram.               |                |  |  |  |  |  |
| Unit 2:Free Vibrations (SDOF)                                                           | 08Hrs.         |  |  |  |  |  |
| Basic concepts and definitions, vibration measuring parameters- Displacement,           |                |  |  |  |  |  |
| Velocity and acceleration, Free and forced vibrations, Equivalent Springs. Types        |                |  |  |  |  |  |
| of damping. Free vibrations with and without damping (Rectilinear, Torsional &          |                |  |  |  |  |  |
| Transverse), Degree of damping. Logarithmic decrement, equivalent viscous               |                |  |  |  |  |  |
| damping, Coulomb damping.                                                               |                |  |  |  |  |  |
| Unit 3:Forced Vibrations (SDOF)                                                         | 07 <b>Hrs.</b> |  |  |  |  |  |
| Forced vibrations with viscous damping, magnification factor, frequency                 |                |  |  |  |  |  |
| response curves, vibration isolation and transmissibility, forced vibrations due to     |                |  |  |  |  |  |
| support excitation. Critical speed of shafts.                                           |                |  |  |  |  |  |
| Unit 4. Vibration Maggurament and Applications                                          | 07 Um          |  |  |  |  |  |
| Unit 4:- Vibration Measurement and Applications :                                       | 07 <b>mrs.</b> |  |  |  |  |  |
| formassurements fdignlagement valuative applaration and frequency of vibration S        |                |  |  |  |  |  |
| ensors and Actuators signal conditioners. Time and frequency domain                     |                |  |  |  |  |  |
| plot Spectral analyzers. Exciters. EET analyzer                                         |                |  |  |  |  |  |
| plot, spectral analyzers, Exercis, 111 analyzer.                                        |                |  |  |  |  |  |
| Textbooks:                                                                              |                |  |  |  |  |  |
| 1. Ratan S.S., "Theory of Machines", Tata McGraw Hill, New Delhi, 3rd Edition, 201      | 1.             |  |  |  |  |  |
| 2. Sadhu Singh, "Theory of Machines", Pearson Education, 2nd Edition, 2009              |                |  |  |  |  |  |
| 3. H. G. Phakatkar, "Theory of Machines I", Edition 2009. Nirali Publication, 5th Editi | on 2009.       |  |  |  |  |  |
| 4. Mechanical Vibrations by Grover G.K., Nemchand Publications.                         |                |  |  |  |  |  |
| , , , , , , , , , , , , , , , , , , ,                                                   |                |  |  |  |  |  |
|                                                                                         |                |  |  |  |  |  |
|                                                                                         |                |  |  |  |  |  |
|                                                                                         |                |  |  |  |  |  |

#### **References:**

- 1. Hamilton H Mabie and Charles F Reinholtz, (1987), "Mechanisms and Dynamics of Machinery", Fourth Edition, John-Wiley and Sons, Inc., New York.
- Ghosh A. and Mallick A.K., (1988), "Theory of Mechanisms and Machines", Affiliated East-West Press Pvt. Ltd., New Delhi.
- 3. William T Thomson, Marie Dillon Dahleh and Chandramouli Padmanabhan, (2004), "Theory of Vibration with applications", Fifth Edition, Pearson Education Publishers.
- 4. Theory of Machines by Dr. V.P.Singh, Dhanpat Rai Publications.
- 5. Theory of Machines by Ballaney, Khanna Publications.
- 6. Mechanical Vibrations by S.S.Rao, Pearson Education Publications
- 7. Theory of vibrations with applications by W.T. Thomson (CBS Publications)
- 8. Kinematics, Dynamics and Design of Machinery by Walidron, Wiley India Publi.

9. Theory of Vibration with applications by W.T.Thomson M.D. Dahleh, C.Padmanabhan Pearson Education

#### Unit wise Measurable students Learning Outcomes:

- 1. Apply Balancing principles to the Reciprocating and Rotary machines.
- 2. Understand the fundamental concepts of vibrations.
- 3. Apply analytical formulae to solve vibratory problems.
- 4. Select Suitable Vibration measuring instrument for specific applications

| Title | Title of the Course: HEAT TRANSFER                                                                                                                                                                                                                 |             |                   |              |         |         |          |        |         |         | L      | Т        |        | Р       | Credit  |               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|--------------|---------|---------|----------|--------|---------|---------|--------|----------|--------|---------|---------|---------------|
| Cour  | Course Code: UMEPC0503                                                                                                                                                                                                                             |             |                   |              |         |         |          |        |         | 3       | -      |          | -      | 3       |         |               |
|       | Cou                                                                                                                                                                                                                                                | rse         | Pre-I             | Requi        | site: I | Differe | ential   | calcul | lus, in | tegral  | calcu  | lus, Flu | ıid me | chanic  | 5.      |               |
|       | Course Description: The course deals with fundamentals aspects of heat transfer. The knowledge of heat transfer in necessary for design of thermal equipments in the industry and simulation using Computational Fluid dynamics and Heat transfer. |             |                   |              |         |         |          |        |         |         |        |          |        |         |         |               |
|       | Course Objectives:                                                                                                                                                                                                                                 |             |                   |              |         |         |          |        |         |         |        |          |        |         |         |               |
|       | <ol> <li>To prepare students of Mechanical Engineering to excel in heat transfer problems<br/>related to thermal Engineering so as to succeed in careers in industry, technical<br/>professions or entrepreneurship.</li> </ol>                    |             |                   |              |         |         |          |        |         |         |        |          |        |         |         |               |
|       | ,                                                                                                                                                                                                                                                  | 2.          | То р              | rovid        | e stud  | lents   | with a   | a soli | d fou   | ndatio  | on in  | mather   | natics | , scien | ce and  | l engineering |
|       |                                                                                                                                                                                                                                                    |             | funda             | amen         | tals re | quire   | d to s   | olve   | engin   | eering  | g prob | lems i   | n heat | and al  | so to p | oursue higher |
|       |                                                                                                                                                                                                                                                    |             | studi             | es.          |         |         |          |        |         |         |        |          |        |         |         |               |
|       |                                                                                                                                                                                                                                                    | 3.          | To ti             | rain s       | tuden   | ts wi   | th goo   | od sc  | ientifi | ic and  | l eng  | ineerin  | g brea | dth in  | the at  | reas of heat  |
|       |                                                                                                                                                                                                                                                    |             | trans             | fer so       | o as to | o com   | prehe    | nd, a  | nalyze  | e, des  | ign a  | nd crea  | te nov | el pro  | ducts a | and solutions |
|       |                                                                                                                                                                                                                                                    |             | for th            | ie rea       | l life  | proble  | ems.     |        |         |         |        |          |        |         |         |               |
|       | Cou                                                                                                                                                                                                                                                | rse         | e Lea             | rning        | g Out   | come    | s:       |        |         |         |        |          |        |         |         |               |
| CO    | Af                                                                                                                                                                                                                                                 | iter        | • the o           | comp         | letior  | n of tl | ie cou   | irse t | he stu  | ıdent   | shou   | ld be    |        | Bloo    | m's Co  | ognitive      |
| GO    | ab                                                                                                                                                                                                                                                 | le          | to                | 0 1          |         | 1       | <u> </u> |        | 1       |         |        | 0        |        | level   | Des     | criptor       |
| CO    | I Ex<br>mo                                                                                                                                                                                                                                         | ipla<br>ech | un 1<br>anisn     | funda<br>ns. | menta   | als c   | of H     | eat    | and     | Mass    | Tra    | anster   |        | 2       | Une     | derstanding   |
| CO2   | 2 De me                                                                                                                                                                                                                                            | eve<br>ech  | lop<br>anisn      | diffe<br>ns. | erentia | il e    | quatio   | ons    | for     | Heat    | Tra    | ansfer   |        | 3       | I       | Applying      |
| CO    | 3 A1                                                                                                                                                                                                                                               | naly        | yze th            | ie per       | forma   | ince c  | of heat  | trans  | fer de  | evices  |        |          |        | 4       | A       | nalyzing      |
| CO4   | 4 Es<br>dit                                                                                                                                                                                                                                        | tin<br>ffer | nate ti<br>rence. | he rat       | te of   | heat 1  | transfe  | er at  | specif  | fied to | empe   | rature   |        | 5       | E       | valuating     |
| CO-I  | PO.P                                                                                                                                                                                                                                               | SO          | Man               | oping        | :       |         |          |        |         |         |        |          |        |         |         |               |
| CO    | PO                                                                                                                                                                                                                                                 | 1           | PO2               | PO3          | PO4     | PO5     | PO6      | PO7    | PO8     | PO9     | PO10   | PO11     | PSO1   | PSO2    | PSO3    |               |
| CO    | 1 3                                                                                                                                                                                                                                                |             | -                 | -            | -       |         | -        | -      |         | -       | -      | -        | 2      | -       | 1       |               |
| CO2   | 2 _                                                                                                                                                                                                                                                |             | 3                 | -            | -       |         | -        | -      | -       | -       | -      | -        | -      | -       | -       |               |
| CO3   | 3 -                                                                                                                                                                                                                                                |             | 3                 | -            | -       | -       | -        | 2      | -       | -       | -      | -        | -      | -       | -       |               |
|       | • -                                                                                                                                                                                                                                                |             | 3                 | -            | -       | -       | -        | -      | -       | 1       | -      | -        | -      | 2       | -       |               |
| A     | Assessments :<br>Teacher Assessment:<br>Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE)<br>and one End Semester Examination (ESE) having 20%, 30% and 50% weights<br>respectively.                              |             |                   |              |         |         |          |        |         |         |        |          |        |         |         |               |
| ISE   | 1                                                                                                                                                                                                                                                  | m           |                   |              |         |         |          |        |         | 10      | a1K5   |          |        |         |         |               |
| ISE   | 1                                                                                                                                                                                                                                                  |             |                   |              |         |         |          |        | ]       | 10      |        |          |        |         |         |               |

| MSE                                                                  | 30                                    |                |
|----------------------------------------------------------------------|---------------------------------------|----------------|
| ISE 2                                                                | 10                                    |                |
| ESE                                                                  | 50                                    |                |
| ISE 1 and ISE 2 are based on assignment/decla                        | red test/quiz/seminar/Group Discu     | ssions etc.    |
| MSE: Assessment is based on 50% of course c                          | ontent (Normally first three modul    | es)            |
| ESE: Assessment is based on 100% course con                          | tent with60-70% weightage for co      | urse content   |
| (normally last three modules) covered after MS                       | SE.                                   |                |
| Course Contents:                                                     |                                       |                |
| UNIT 1: BASICS OF HEAT TRANSFER AND                                  | ONE DIMENSIONAL STEADY                | 09Hrs.         |
| STATE HEAT CONDUCTION                                                |                                       |                |
| <b>Basics of Heat Transfer:</b>                                      |                                       |                |
| Thermodynamics and Heat Transfer, Heat Tran                          | sfer Mechanisms and Basic Laws        |                |
| Simultaneous Heat Transfer Mechanisms. Prob                          | lem Solving Techniques in Heat        |                |
| Transfer.                                                            |                                       |                |
| Heat Conduction Equation: General Heat Conduction                    | ction Equation: Rectangular           |                |
| Coordinates, Cylindrical Coordinates and Spherica                    | Without Heat Concretions Plana        |                |
| Wall Cylinder Sphere Boundary and Initial Cond                       | itions Variable Thermal               |                |
| Conductivity Concept of Thermal Resistance Ther                      | mal Contact Resistance, Overall       |                |
| Heat Transfer Coefficient. Critical Radius of Insula                 | tion.                                 |                |
| One Dimensional Steady State Heat Con                                | nduction With Heat Generation:        |                |
| Plane Wall, Cylinder and Sphere.                                     |                                       |                |
|                                                                      |                                       |                |
| <b>UNIT 2: ONE DIMENSIONAL UNSTEADY ST</b>                           | TATE HEAT CONDUCTION                  | 07 Hrs.        |
| AND EXTENDED SURFACES                                                |                                       |                |
| Transient Heat Conduction: Lumped System Ana                         | alysis, Significance of Biot and      |                |
| Fourier Number. Transient Heat Conduction in Lar                     | ge Plane Walls, Long Cylinders,       |                |
| and Spheres With Spatial Effects Transient Heat C                    | onduction in Semi-Infinite Solids.    |                |
| Extended Surfaces (Finned Surfaces): Types of f                      | ins, applications, Expression for     |                |
| Heat Transfer, Temperature Distribution, fin efficie                 | ency and Fin effectiveness basedfin   |                |
| tip condition, Error estimation in Thermowell.                       |                                       |                |
|                                                                      |                                       |                |
|                                                                      |                                       | 0 <b>7 II</b>  |
| UNIT 3: CONVECTION<br>Fundamentals of Convections Developed Machania | m of Convection Valuatity and         | 07 <b>Hrs.</b> |
| Thermal Boundary Layer, Differential Convection                      | Equations (Mass. Momentum and         |                |
| Energy Equations) Solution of Convection Equation                    | ons for a Flat Plate Reynolds and     |                |
| Chilton-Colburn Analogy Buckingham's Pi Theore                       | em applied to Forced and Free         |                |
| Convection Physical Significance of dimensionless                    | s numbers                             |                |
| External Forced Convection: Local and Average                        | Heat Transfer Coefficient.Parallel    |                |
| Flow over Flat Plates, Flow Across Cylinders and S                   |                                       |                |
| Internal Forced Convection: Mean Velocity and                        |                                       |                |
| in tubes, Turbulent Flow in Tubes.                                   |                                       |                |
| Natural Convection: Physical Mechanism of natu                       |                                       |                |
| Over surfaces. Natural Convection inside enclosure                   |                                       |                |
| and Radiation. Combined Natural and Forced Conv                      | vection.                              |                |
| UNIT 4: THERMAL RADIATION                                            |                                       | 09 Hrs.        |
| 4.1 Fundamentals of Thermal Radiation: Nature                        | of radiation, electromagnetic wave    |                |
| spectrum, Black Body Radiation. Laws of Radiati                      | on, Kadiation Intensity. Irradiation. |                |

| Radiosity, Spectral Quantities, Radiative Properties, The Greenhouse Effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|--|
| Surfaces Radiation Heat Transfer Between Non-Black Surfaces Radiation Shields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |  |  |  |  |  |  |  |  |
| Problem Solving using Electrical Analogy Radiation Effect on Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |  |  |  |
| Problem Solving using Electrical Analogy, Kadiation Effect on Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |  |  |
| Measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |  |  |  |  |  |  |  |  |
| UNIT 5: HEAT EXCHANGERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08 Hrs.        |  |  |  |  |  |  |  |  |
| Types of Heat Exchangers, Overall Heat Transfer Coefficient, Effect of Fouling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |  |  |  |
| Analysis of Heat Exchangers (Parallel and Counter Flow); LMTD and Effectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |  |  |  |
| NTU Methods, Multi pass and Cross Flow Heat Exchangers. Selection of Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |  |  |
| Exchangers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |  |  |  |  |  |  |  |  |
| UNIT 6: COOLING OF ELECTRONIC EQUIPEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05 <b>Hrs.</b> |  |  |  |  |  |  |  |  |
| Introduction and History, Importance of Heat Transfer in Electronics, Cooling Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |  |  |  |  |  |
| of Electronic Equipment, Conduction Cooling, Air Cooling, Liquid Cooling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |  |  |
| Immersion Cooling, Heat Pipes, Thermoelectric Coolers, Electrohydrodyanmic Flow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |  |  |
| Synthetic Jet, Microchannel Cooling, Cooling by nano fluids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |  |  |  |  |  |  |  |
| Textbooks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |  |  |  |
| 1. Heat Transfer: A Practical Approach, Yunus A. Cengel, McGraw-Hill Higher Edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ucation; 2     |  |  |  |  |  |  |  |  |
| edition 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,              |  |  |  |  |  |  |  |  |
| 2 Fundamentals of Heat & Mass Transfer 7th Edition Frank P Incronera Wiley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |  |  |  |
| 3 A Course in Heat and Mass Transfer : S. C. Arora (Author) S. Domkundwar (Author)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arond V        |  |  |  |  |  |  |  |  |
| Demlandwar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ), Ananu v.    |  |  |  |  |  |  |  |  |
| A H (A + 1) M | . 10           |  |  |  |  |  |  |  |  |
| 4 Heat and Mass transfer: J Holman (Author), Souvik Bhattacharyya, McGraw Hill Edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ication; 10    |  |  |  |  |  |  |  |  |
| 5 Heat Transfer Thermal Management of Floatronics Vounes Shahany, CBC Press Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lion Edition   |  |  |  |  |  |  |  |  |
| 5. Heat Transfer- Therman Management of Electronics, Fouries Shabany, CKC Fless, inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |  |  |  |  |  |
| Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |  |  |
| 1. Fundamentals of Engineering Heat and mass trasnfer, R C Sachdeva, NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGE:           |  |  |  |  |  |  |  |  |
| Fourthadition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )              |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              |  |  |  |  |  |  |  |  |
| 2. Heat And Mass Transfer, Data Book, C.P. Kothandaraman, New Age Internationa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al             |  |  |  |  |  |  |  |  |
| PrivateLimited; Ninth edition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |  |  |  |  |  |  |  |
| 3. Heat Transfer 10Ed (Sie) (Pb 2020) Paperback – 1 July 2017 by J Holman (Author                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or), Souvik    |  |  |  |  |  |  |  |  |
| Bhattacharyya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |  |  |  |  |  |  |  |

| Title of | f the Course: Automobile & EV Technology                                                   | L      | Т     | Р      | Credit |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------|--------|-------|--------|--------|--|--|--|--|--|
| Course   | e Code: UMEPE0511                                                                          | 3      | -     | -      | 3      |  |  |  |  |  |
| Course   | Course Pre-Requisite: Basic Mechanical Engineering, I. C Engine, Basic knowledge abo       |        |       |        |        |  |  |  |  |  |
| electric | electric motors.                                                                           |        |       |        |        |  |  |  |  |  |
| Course   | Course Description: This course discusses the fundamental concepts, principles and         |        |       |        |        |  |  |  |  |  |
| analysi  | s of hybrid and electric vehicles. This course discusses the va                            | arious | EV sı | ıbsyst | ems    |  |  |  |  |  |
| such as  | electric motors, motor controllers, energy storage devices, b                              | attery | mana  | geme   | nt     |  |  |  |  |  |
| system   | , charging technology etc.                                                                 |        |       |        |        |  |  |  |  |  |
| Course   | Course Objectives: To impart the knowledge about electric vehicles and hybrid vehicles. To |        |       |        |        |  |  |  |  |  |
| expose   | the students to various drive technology and energy storage                                | techno | ology | requir | ed in  |  |  |  |  |  |
| electric | and hybrid vehicles.                                                                       |        |       |        |        |  |  |  |  |  |
| Course   | e Learning Objectives:                                                                     |        |       |        |        |  |  |  |  |  |
| CO       | After the completion of the course the student should be                                   | Blo    | om's  | Cogn   | itive  |  |  |  |  |  |
|          | able to                                                                                    | leve   | el D  | escrip | otor   |  |  |  |  |  |
| CO1      | Learn the ability to understand different automobile                                       | II     | U     | nderst | anding |  |  |  |  |  |
|          | systems and components.                                                                    |        |       |        |        |  |  |  |  |  |
| CO2      | Recall the impact of EV on environment and sustainability.                                 | II     | U     | nderst | anding |  |  |  |  |  |
| CO3      | Recall the structure of electric vehicle.                                                  | II     | U     | nderst | anding |  |  |  |  |  |
| CO4      | CO4 Compute design parameters of Electric vehicles for a given III Applying                |        |       |        |        |  |  |  |  |  |
|          | requirement.                                                                               |        |       |        |        |  |  |  |  |  |
|          |                                                                                            |        |       |        |        |  |  |  |  |  |

# **CO-PO Mapping:**

| CO  | PO1 | PO<br>2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO<br>3 |
|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|----------|
| CO1 | 2   | 1       | 1   |     | 1   |     |     |     |     | 1    |      |      |      |          |
| CO2 | 2   | 1       | 1   |     | 1   | 2   | 1   |     |     |      |      | 1    |      |          |
| CO3 | 2   | 1       | 1   |     |     | 2   | 1   |     |     |      |      | 2    | 1    | 2        |
| CO4 | 3   | 1       | 2   | 1   | 1   | 2   | 1   |     |     |      | 2    | 2    | 1    | 2        |

## Assessments :

## **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment | Marks |
|------------|-------|
| ISE 1      | 10    |
| MSE        | 30    |
| ISE 2      | 10    |
| ESE        | 50    |

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

| Course Contents:                                                                               |          |
|------------------------------------------------------------------------------------------------|----------|
| Unit 1:-                                                                                       | 6 Hrs.   |
| Introduction to Electric Vehicles                                                              |          |
| History of electric vehicles, Development towards 21 <sup>st</sup> century, Automobile history |          |
| and development, Classification, vehicle layouts- engine location and drive                    |          |
| arrangement, specifications of vehicles, Type of vehicle bodies, Environmental                 |          |
| impact, Social and environmental importance of hybrid and electric vehicles, Fuel              |          |
| Cell EV.                                                                                       |          |
|                                                                                                |          |
| Unit ?                                                                                         | 8 Hrs    |
| Transmission System                                                                            | 0 111 5. |
| Clutch European and requirements Classification Construction and working of                    |          |
| Single plate Multi plate Diaphragm spring and centrifugal clutches Eluid flyaybeel             |          |
| Gear Box Necessity classification construction of manual gear boxes like Sliding               |          |
| mosh constant mosh Synchromach Enjavalia goar train. Automatic transmission                    |          |
| Overdrive Propeller sheft Differential and final drive                                         |          |
| Overdrive. Propener shart, Differential and final drive.                                       |          |
| Unit 3.                                                                                        | 8 Hrs    |
| Vehicle Systems                                                                                | 0 111 5. |
| Steering systems - function principle of steering Types of steering gearbox nower              |          |
| steering                                                                                       |          |
| Suspension system - Functions Types of suspension systems types of springs                     |          |
| Braking system - Need principle types of suspension systems, types of springs.                 |          |
| brakes disc and drum types air brakes Anti-lock braking system                                 |          |
| Flectrical Systems - Automotive batteries battery charging system.                             |          |
| lighting and electrical accessories automobile air conditioning                                |          |
| inglitting and electrical accessories, automobile an conditioning                              |          |
| Unit 4:                                                                                        | 9 Hrs.   |
| Vehicle Performance                                                                            |          |
| Resistance to vehicle motion Air Rolling and Gradient resistance Acceleration                  |          |
| Gradeability and draw har pull Traction and Tractive effort Distribution of weight             |          |
| Power required for vehicle propulsion Selection of gear ratio Rear axle ratio                  |          |
| (Numerical)                                                                                    |          |
| Unit 5:                                                                                        | 7 Hrs.   |
| Electric vehicles – technology and design                                                      |          |
| Configuration of EVs. Electric motor characteristics, design process and issue.                |          |
| modelling and performance estimation, energy consumption, regenerative breaking.               |          |
|                                                                                                |          |
|                                                                                                |          |
| Unit 6:                                                                                        | 7 Hrs.   |
| Hybrid electric vehicle technology                                                             |          |
| Concepts, modes and operation patterns, architectures of hybrid drive trains, series           |          |
| hybrid drive train, parallel hybrid drive train.                                               |          |
| - · · ·                                                                                        |          |
|                                                                                                |          |
|                                                                                                |          |
|                                                                                                |          |
|                                                                                                |          |
|                                                                                                |          |

### **Textbooks:**

- "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", C. Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons, 2011
- "Hybrid Electric Vehicles: Energy Management Strategies", S. Onori, L. Serrao and G. Rizzoni, Springer, 2015
- 3. Kripal Singh, Automobile Engineering Vol II, Standard Publishers Distributors, Tenth Edition, 2007
- 4. P S Gill, Automobile Engineering II, S K Kataria and Sons, Second Edition, 2012
- 5. R K Rajput, Automobile Engineering, Laxmi Publications, First Edition, 2007
- 6. Automobile Engineering", G.B.S. Narang., Khanna Publication, 3rdEdition.

### **Reference Books:**

- 1. James Larminie, J. Lowry, "Electric Vehicle Technology Explaned", John Wiley & Sons Ltd. 2003.
- 2. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 3. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 4. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.
- 5. William Crouse, "Automobile Engineering"
- 6. Newton, Steeds and Garrett, The Motor Vehicle, Butterworths International Edition, 11th Edition, 1989
- 7. Crouse and Anglin, Automotive Mechanics, McGrawhill Publication, Tenth Edition, 2007

| Title of the Course: Tribology                                                              |                                                                                       |         |         |          |         |          |        |         |         |          | L        | Т         | Р        | Credit         |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|---------|----------|---------|----------|--------|---------|---------|----------|----------|-----------|----------|----------------|
| Course Code: UMEPE0512                                                                      |                                                                                       |         |         |          |         |          |        |         |         |          | 3        | -         | -        | 3              |
| Course Pre-Requisite: Engineering Mathematics, Fluid Mechanics, Machine Design,             |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| Manufa                                                                                      | Manufacturing Process                                                                 |         |         |          |         |          |        |         |         |          |          |           |          |                |
| Course                                                                                      | Descrip                                                                               | otion   | : Tri   | bolog    | y is t  | he stu   | ıdy    | of fr   | iction, | wear     | and      | lubricat  | tion, aı | nd design of   |
| Tribolog                                                                                    | gical Cor                                                                             | npon    | ents,   | scienc   | e of i  | nterac   | ting s | surfac  | es in 1 | elativ   | e moti   | on.       |          |                |
| Course                                                                                      | Course Objectives: After successful completion of this course, students will be able- |         |         |          |         |          |        |         |         |          |          |           |          |                |
| 1. To Apply the basic theories of friction, wear and lubrications about frictional behavior |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| common                                                                                      | commonly encountered sliding surfaces                                                 |         |         |          |         |          |        |         |         |          |          |           |          |                |
| 2. To Se                                                                                    | elect suita                                                                           | able/p  | prope   | r grad   | e lubr  | ricant f | for sp | oecific | c appli | cation   | •        |           |          |                |
| 3. To kn                                                                                    | 3. To know about properties of lubricants, modes of lubrication, additives etc.       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| 4. To select suitable material combination for tribological contact.                        |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| 5. To suggest an explanation to the cause of tribological failures.                         |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| 6. To design bearing, friction, wear test rig for laboratory purposes.                      |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| Course Learning Outcomes:                                                                   |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| CO                                                                                          | After the completion of the course the student should beBloom's Cognitive             |         |         |          |         |          |        |         |         |          |          |           |          | nitive         |
|                                                                                             | able to                                                                               |         |         |          |         |          |        |         |         |          |          | level     | Desci    | riptor         |
| CO1                                                                                         | Explain                                                                               | indu    | istrial | and p    | ractio  | cal obj  | ectiv  | es of   | tribolo | ogy      |          | 2         | Unde     | rstanding      |
|                                                                                             | Conside                                                                               | ering   | parai   | neters   | of tr   | ibolog   | y tria | ngle.   |         |          |          |           |          |                |
| CO2                                                                                         | Explain                                                                               | n mec   | hanis   | ms of    | fricti  | on and   | l wea  | r for   | metals  | s, alloy | vs,      | 2         | Unde     | rstanding      |
|                                                                                             | Cerami                                                                                | cs an   | d pol   | ymers    | •       |          |        |         |         |          |          |           |          |                |
| CO3                                                                                         | Illustra                                                                              | te dif  | feren   | t types  | s of lu | bricati  | ion s  | ystem   | and r   | nethod   | ls.      | 2         | Unde     | rstanding      |
| CO4                                                                                         | Apply f                                                                               | rictic  | on/lut  | oricatio | on me   | echanis  | sm to  | the p   | oractic | al       |          | 3         | Apply    | ying           |
|                                                                                             | enginee                                                                               | ering   | probl   | em.      |         |          |        |         |         |          |          |           |          |                |
| CO-PC                                                                                       | ) Mapp                                                                                | ing:    |         |          |         |          |        |         |         |          |          |           |          |                |
|                                                                                             |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| Course                                                                                      | :                                                                                     |         |         |          |         | PO's     |        |         |         |          |          |           | PSO'     | s              |
| Outcom                                                                                      | e 1                                                                                   | 2       | 3       | 4        | 5       | 6        | 7      | 8       | 9       | 10       | 11       | 1         | 2        | 3              |
| S CO1                                                                                       | -                                                                                     | -       | 1       | -        |         | Ű        | -      | Ű       | -       | -•       |          | -         | -        |                |
| 01                                                                                          | 3                                                                                     | 2       | 1       |          |         |          |        |         |         |          |          | 2         | 2        |                |
| CO2                                                                                         | 2                                                                                     | 2       |         |          |         |          |        |         |         |          |          | 2         | 2        |                |
| CO3                                                                                         | 3                                                                                     | 2       | 2       | 3        |         |          |        |         |         |          |          | 2         | 2        |                |
| CO4                                                                                         | 2                                                                                     | 1       | 2       | 2        |         |          |        |         |         |          |          | 2         | 2        |                |
|                                                                                             |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          | <u> </u>       |
|                                                                                             |                                                                                       |         |         |          |         |          |        |         |         |          |          |           |          |                |
| Assessn                                                                                     | ients :                                                                               |         |         |          |         |          |        |         |         |          |          |           |          |                |
| Teacher                                                                                     | r Assessi                                                                             | ment    | :       |          |         |          |        |         |         |          |          |           |          |                |
| Two con                                                                                     | nponent                                                                               | s of I  | n Ser   | nester   | Eval    | uation   | (ISE   | ), On   | e Mid   | Seme     | ster Ex  | kaminat   | ion (MS  | SE) and one    |
| End Sen                                                                                     | nester Ex                                                                             | kamir   | nation  | (ESE     | E) hav  | ing 20   | %, 3   | 0% ai   | nd 50%  | 6 weig   | ghts res | spective  | ely.     | ,              |
| Assess                                                                                      | ment                                                                                  |         |         |          |         |          |        | Ma      | rks     |          |          | -         |          |                |
| ISE 1                                                                                       |                                                                                       |         |         |          |         |          |        | 10      |         |          |          |           |          |                |
| MSE                                                                                         |                                                                                       |         |         |          |         |          |        | 30      |         |          |          |           |          |                |
| ISE 2                                                                                       |                                                                                       |         |         |          |         |          |        | 10      |         |          |          |           |          |                |
| ESE                                                                                         |                                                                                       |         |         |          |         |          |        | 50      |         |          |          |           |          |                |
| ISE 1 ar                                                                                    | nd ISE 2                                                                              | are b   | ased    | on ass   | ignm    | ent/de   | clare  | d test  | /quiz/s | emina    | r/Grou   | ıp Disci  | ussions  | etc.           |
| MSE: A                                                                                      | ssessme                                                                               | nt is l | based   | on 50    | 0% of   | course   | e con  | tent (  | Norma   | ally fir | st thre  | e modu    | les)     |                |
| ESE: A                                                                                      | ssessmei                                                                              | nt is   | based   | d on 1   | 100%    | cours    | e co   | ntent   | with    | 60-70°   | % wei    | ghtage    | for cou  | irse content   |
| (normal                                                                                     | ly last th                                                                            | ree m   | odul    | es) co   | vered   | after I  | MSE    |         |         |          |          | 0 0       |          |                |
| Course                                                                                      | Conte                                                                                 | nts:    | -       | -        |         | -        | -      |         | -       | -        | -        |           |          |                |
| Unit 1:-                                                                                    | INTR                                                                                  | ODU     | CTI     | ON O     | F TR    | IBOL     | OGY    | 7       |         |          |          |           |          | 08 <b>Hrs.</b> |
| Tribolos                                                                                    | gy defini                                                                             | tion,   | Need    | l of Ti  | ribolo  | gy, Tr   | ibolo  | ogy in  | desig   | n, Tri   | bology   | in ind    | ustry    |                |
| (Mainte                                                                                     | nance),                                                                               | Lub     | ricati  | on- l    | Defin   | ition,   | Lub    | rican   | t pro   | pertie   | s, Vi    | scosity.  | its      |                |
| measure                                                                                     | ments- I                                                                              | Nume    | erical. | basic    | mod     | es of l  | lubric | cation  | , type  | s of lu  | brican   | ts, Stan  | dard     |                |
| Grades                                                                                      | of lubric                                                                             | ants,   | selec   | tion of  | f lubr  | icants,  | com    | monl    | y used  | l lubrio | cants a  | nd Haz    | ards,    |                |
| Recyclin                                                                                    | ng of use                                                                             | d oil,  | Disp    | osal o   | f used  | l oil, b | earin  | g mat   | erials, | Funda    | amenta   | ls of su  | rface    |                |
| engineer                                                                                    | ring, Gre                                                                             | en Ti   | ribolo  | gy, Be   | earing  | g Term   | inolo  | ogy-T   | ypes c  | of Slidi | ing coi  | ntact, ro | lling    |                |
| contact                                                                                     | bearings.                                                                             | •       |         |          |         |          |        | -       |         |          |          |           |          |                |
|                                                                                             | contact ocarmgs.                                                                      |         |         |          |         |          |        |         |         |          |          |           |          |                |

| <b>Unit 2:FRICTION</b><br>Introduction, Laws of friction, kinds of friction, causes of friction, area of contact, friction measurement, theories of friction. | 07 <b>Hrs.</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Unit 3WFAD                                                                                                                                                    | 07 <b>U</b> m  |
| Turnes of wear various factors affecting wear measurement of wear theories of wear                                                                            | 0/ <b>mrs.</b> |
| Wear debris analysis: Wear reduction methods                                                                                                                  |                |
| Unit A HVDRODVNAMIC LUBRICATION                                                                                                                               | 08 <b>H</b> rs |
| Theory of hydrodynamic lubrication, mechanism of pressure development in an oil                                                                               | 00 1113.       |
| film Two dimensional Reynolds equation. Petroff's equation pressure distribution in                                                                           |                |
| iournal hearings - long & short Load Carrying capacity Somerfield number and its                                                                              |                |
| importance- Numerical. Introduction to Hydrodynamic Thrust Bearing                                                                                            |                |
| Unit 5: HYDROSTATIC LUBRICATION                                                                                                                               | 07 <b>Hrs.</b> |
| Introduction to hydrostatic lubrication, hydrostatic step bearing, load carrying capacity                                                                     | 07 1100        |
| and oil flow through the hydrostatic step bearing. Numerical. Hydrostatic squeeze film                                                                        |                |
| : basic concept, circular and rectangular plate approaching a plane-Numerical                                                                                 |                |
| Unit 6: DIAGNOSTIC MAINTENANCE AND CONDITION MONITORING                                                                                                       | 08 <b>Hrs.</b> |
| Types of maintenance; Preventive and corrective Maintenance; Condition Based                                                                                  |                |
| Maintenance and Condition Monitoring; Cost effectiveness. Different condition                                                                                 |                |
| monitoring Techniques; Visual, performance, fluid and vibration monitoring.                                                                                   |                |
| Fluid condition and particle monitoring; Fluid degradation and its identification                                                                             |                |
| methods.                                                                                                                                                      |                |
| Chemical tests, infrared spectroscopy, calorimeter. Wear debris analysis; SOAP,                                                                               |                |
| Ferrography and other spectrometric analysis techniques for wear rate evaluation and                                                                          |                |
| interpretation. Vibration monitoring methods; Vibration data collection; Techniques;                                                                          |                |
| Instruments; Transducers; Commonly witnessed machinery faults diagnosed by                                                                                    |                |
| vibration analysis.                                                                                                                                           |                |
| Teaching assessment of Tutorials will be based on the completion of following as                                                                              | signments      |
| Assignment on Introduction of Tribology.                                                                                                                      |                |
| Assignment on Friction.                                                                                                                                       |                |
| Assignment on Wear.                                                                                                                                           |                |
| Assignment on Hydrodynamic Lubrication.                                                                                                                       |                |
| Assignment on Hydrostatic Lubrication.                                                                                                                        |                |
| Assignment on condition monitoring Techniques.                                                                                                                |                |
| 1 Engineering Tribology Presents Salas – Prentice Hell of India Put I to New Dell                                                                             |                |
| 2. Euglideering Thoology – Flasania Sanoo – Flenice Han of India Fvi. Ltu., New Den                                                                           | arning Dyt     |
| Ltd 2010                                                                                                                                                      | Learning 1 vt. |
| 3 Tribology in Industries – S.K. Shriyastaya – S. Chand & Company I td. New Delhi                                                                             | 2001           |
| 4. Bearing Design in Machinery, Engineering Tribology and Lubrication - A. Harnoy-M                                                                           | arcel Dekker   |
| Inc., 2003                                                                                                                                                    |                |
| Reference Books:                                                                                                                                              |                |
| 1. Cameron A., Basic Lubrication Theory, Wiley Eastern Ltd.                                                                                                   |                |
| 2. Bharat Bhushan, Principles and Applications of Tribology 2nd Edition, Wiley India                                                                          |                |
| 3. Mujumdar B. C., Introduction to Tribology and Bearings, S. Chand and Company Ltd                                                                           | d. New Delhi.  |
| 4. Fuller D. D., Theory and Practice of Lubrication for Engineers, John Wiley and Sons                                                                        | 5.             |
| 5. Halling J., Principles of Tribology, McMillan Press Ltd.                                                                                                   |                |
| 6. Bhushan B. and Gupta B. K., Handbook of Tribology: Material, Coatings and Surfac                                                                           | e Treatments,  |
| McGraw Hill Ltd.                                                                                                                                              |                |
| 7. Davis J., Surface Engineering for Corrosion and Wear Resistance, Woodhead Publis                                                                           | hing, 2001.    |
| 8. Tadausz Burakowski, Surface Engineering of Metals: Principles, Equipments and                                                                              | l'echnologies, |
| Taylor and Francis.                                                                                                                                           |                |
| 9. Tribology in machine design- By -T. A. Stolarski                                                                                                           |                |
| 10. Iribology & design-edited by M. Hadfield, C. A. Brebbia, J. Seabra                                                                                        | D. D. off      |
| 11.1110010g1cal Design of Machine Elements by D. Dowson, C.M. Taylor, M. Godet,                                                                               | D. Berthe      |

| Title of the Course: Machine Tool Design | L | Т | Р | Credit |
|------------------------------------------|---|---|---|--------|
| Course Code: LIMEPE0513                  | 3 |   |   | 3      |

**Course Pre-Requisite:** Knowledge of basic mechanical engineering, Machine design and Manufacturing processes.

**Course Description:** This course aims to impart knowledge of machine tools and various operations performed on to it, using different cutting tools.Design of machine tool structures and drives, Design and analysis of systems for specified speeds and feeds and selection of subsystems for achieving high accuracy in machining.

#### **Course Objectives:**

- 1) To understand all the traditional and basic machine tools used on these machines for varied applications.
- 2) To make the students understand the concepts & broad principles of machine tool design, regulation of speed and speed regulation, design of machine tool structure, dynamics of machine tools.
- 3) To study design procedure of guide ways, hoists, power screws and spindles.
- 4) To understand design procedure of gear boxes for stepped drives.

| Course I | earning Outcomes:                                                         |       |               |
|----------|---------------------------------------------------------------------------|-------|---------------|
| CO       | After the completion of the course the student should be able to          | Bloo  | m's Cognitive |
|          |                                                                           | level | Descriptor    |
| CO1      | Explain the fundamentals & basic concepts of metal removal process tools. | 2     | Understanding |
| CO2      | Describe the basic needs of machine tool components.                      | 3     | Applying      |
| CO3      | Calculate design parameters of guide ways, power screws and spindles.     | 4     | Analyzing     |
| CO4      | Design the gear boxes for stepped drives.                                 | 5     | Evaluating    |

#### **CO-PO Mapping:**

| СО         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| <b>CO1</b> | 3   | 2   |     |     |     |     |            |     |     |      |      |      |      |      |
| CO2        | 3   | 2   | 2   |     | 2   |     |            |     |     |      |      |      |      |      |
| CO3        | 3   | 3   | 3   | 2   | 2   |     |            |     |     |      |      |      | 2    | 1    |
| CO4        | 3   | 3   | 3   | 2   | 1   |     |            | 1   |     |      |      |      | 2    | 1    |

#### Assessments :

**Teacher Assessment:** 

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment | Marks |
|------------|-------|
| ISE 1      | 10    |
| MSE        | 30    |
| ISE 2      | 10    |
| ESE        | 50    |

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

| Course Contents:                                                                                                                                                    |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Unit 1:Principles of Machine Tool Design                                                                                                                            |                        |
| Introduction to machine tool, General requirements of machine tooldesign, Specifications and layout                                                                 |                        |
| of machine tools, Machining rangediagram, Interference diagram, Parameter defining working                                                                          | 7 Hrs.                 |
| motions of a machine tool. Working and auxiliary motion in machine, Machinetool drives, Hydraulic                                                                   |                        |
| Unit 2: Design of Machine Tool Structure                                                                                                                            |                        |
| Fundamentals of machine tool structures and their requirements Design criteria of machine tool                                                                      |                        |
| structure Materials for machine toolstructure Static and dynamic stiffness. Structure profiles Design                                                               | 8 Hrs                  |
| ofbeds and columns. Design of housing models, bases and tables. Designof saddle, carriages and                                                                      | 0 111 5.               |
| rams.                                                                                                                                                               |                        |
| Unit 3: Stepped Drives of Machine Tools                                                                                                                             |                        |
| Gear drive, gear box design, graphical representation of gear box operation with raydiagram,                                                                        | 0.11                   |
| structure diagram and deviation diagram. Gear Teeth Calculations. Basic introduction of any                                                                         | 8 Hrs.                 |
| component of the gearbox on suitable analysis software.                                                                                                             |                        |
| Unit 4: Design of Guide-Ways And Power Screws                                                                                                                       |                        |
| Function and type of guide-ways, design of slide-ways, Protectingdevices for slide-ways, Design of                                                                  | 8 Hrs.                 |
| power screws.                                                                                                                                                       |                        |
| Unit 5:Design of Spindles And Spindle Supports                                                                                                                      |                        |
| Materials for spindles, Design principles of spindles, selection antifrictionbearings, Sliding bearings                                                             | 7 Hrs.                 |
| for machines like lathe, CNC, VMC etc.                                                                                                                              |                        |
| Unit 6: Design of Hoists                                                                                                                                            | 7 Hrs.                 |
| Drives for hoisting, components, and hoisting mechanisms; railtraveling components and                                                                              |                        |
| determining breaking gear operation duringtransient motion; selecting the motor rating and                                                                          |                        |
| Text healing                                                                                                                                                        |                        |
| 1 Machine Tool Design- N.K. Mehta Tata McGraw Hill                                                                                                                  |                        |
| 1. Machine 1001 Design- N.K. Menta 1 ata Meoraw 1111.                                                                                                               |                        |
| 2. Design Principles of Metal Cutting Machine tool- F. Koenigsberger - Pergamon press                                                                               |                        |
| 3. Machine Tool design Handbook CMTI Bangalore, McGraw-Hill                                                                                                         |                        |
| 4. Sen and Bhattacharya,, "Principles of Machine Tools", New Central Book Agencies.                                                                                 |                        |
| 5. Boothroyd, G., "Fundamentals of Metal Machining and Machine Tools", McGraw hill.                                                                                 |                        |
| 6. Acherkan, "Machine Tool Design", Vol 2 & 3, MIR Pub, Russia.                                                                                                     |                        |
| 7. Machine Tool Design, S.K. Basu, Oxford and IBH Publishing.                                                                                                       |                        |
| 8. Machine Tool Design: Sen and Bhattacharya, CBS Publications                                                                                                      |                        |
| Reference books:                                                                                                                                                    |                        |
| 1. Manufacturing Science – Amit abha Ghosh and Mallik, Affiliated East West press, 2010, 2 <sup>nd</sup> edit                                                       | ition.                 |
| 2. Modern machining Process – Pandey and Shah, Tata McGraw Hill – 2009                                                                                              |                        |
| 2. Arouen maeming Process Prancey and onan, Paul Mooraw IIII 2007.                                                                                                  |                        |
| <ol> <li>Manufacturing processes for Engineering Materials by Seropekalpakijian and Steven R.Schimid<br/>education 2009, 5<sup>th</sup> edition.</li> </ol>         | lpearson               |
| <ol> <li>Materials and Processes in Manufacturing by E. Paul De Garmo, J T Black, Ronald A Ko<br/>Edition, Prentice Hall of India Private limited, 2004.</li> </ol> | ohser, 8 <sup>th</sup> |

| Title of the Course: Design Thinking |                                                                               |           |           |                 |                   |              |                   |         |          |                     | Т        | Р            | Cre       | edit       |
|--------------------------------------|-------------------------------------------------------------------------------|-----------|-----------|-----------------|-------------------|--------------|-------------------|---------|----------|---------------------|----------|--------------|-----------|------------|
| Cours                                | se Code                                                                       | e:UMF     | EPE05     | 14              |                   |              |                   |         | 3        | 3                   | -        | -            | 3         | 6          |
| Cours                                | se Pre-                                                                       | Requis    | sites: In | nnovati         | ive and           | l Creat      | ive Mi            | ndset,  | Genuir   | ne intere           | est towa | rds          |           |            |
| Entre                                | preneur                                                                       | ship D    | evelop    | ment a          | nd Pro            | duct de      | esign a           | nd Dev  | velopm   | ent.                |          |              |           |            |
| Cours                                | se Obje                                                                       | ectives   | :         |                 |                   |              |                   |         |          |                     |          |              |           |            |
| 1. To                                | 1. To understand the Design Thinking process and its applications.            |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| 2. To                                | 2. To develop creative and critical thinking skills.                          |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| 3. To                                | 5. To apply Design Thinking methodologies to solve complex problems.          |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| 4. To                                | 4. To enhance team conaboration and communication skills.                     |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| Cours                                | CO After the completion of the course the student should be Bloom's Cognitive |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| CO                                   | CO After the completion of the course the student should be Bloom's           |           |           |                 |                   |              |                   |         |          |                     |          | ognitive     | e         |            |
| 001                                  | able                                                                          | <b>10</b> | <u> </u>  |                 | (D                |              | 1-1               |         |          | lev                 | el Des   | scriptor     | •         |            |
|                                      |                                                                               | tily the  | e princ   | iples of        | Desig             | n Inir       | iking a           | na its  |          | 1                   | Rei      | nember       | ing       |            |
| CO                                   | appin<br><b>E</b> vent                                                        | loin the  | n eng     | meerin          | <u>g com</u>      |              | inalu             | ling    |          | 2                   | Un       | dorator      | ling      |            |
|                                      |                                                                               | ann und   | a defi    | ing id          | king p<br>leating | proto        | , menue<br>typing | and te  | octina   | 2                   | Ull      | uerstand     | ung       |            |
| CO3                                  | Cres                                                                          | ate prot  | totypes   | and co          | anduct            | user te      | sting t           | o itera | te and   | 4                   | An       | nlving       |           |            |
|                                      | impr                                                                          | ove de    | sign so   | lutions         |                   | 4901 U       | Jung l            | 5 nora  | ie anu   | -                   | [AP      | Fijing       |           |            |
| CO4                                  | Eval                                                                          | uate th   | e effe    | tivene          | ss of d           | esign s      | olutio            | ns base | d on     | 4                   | Eva      | luating      |           |            |
|                                      | user                                                                          | feedba    | ack and   | l sustai        | inabilit          | v cons       | iderati           | ons.    |          |                     |          | 0            |           |            |
| CO-P                                 | O Manning                                                                     |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
|                                      | PO1                                                                           | PO2       | PO3       | PO4             | PO5               | PO6          | PO7               | PO8     | PO9      | PO10                | PO11     | PSO1         | PSO2      | PSO3       |
| <b>CO1</b>                           | 3                                                                             | 2         | 2         | 101             | 100               | 2            | 101               | 2       | 207      | 1010                | 1011     | 3            | 1001      | 1000       |
| CO2                                  | 2                                                                             | 3         | 3         |                 |                   | 2            |                   | 2       | 2        |                     |          |              | 3         |            |
| CO3                                  | 2                                                                             | 2         | 3         |                 | 3                 | 2            |                   |         |          | 3                   | 2        |              | 3         |            |
| CO4                                  | 2                                                                             | 1         | 3         |                 |                   | 3            | 1                 |         |          | 2                   | 3        |              |           | 3          |
| Asses                                | sments                                                                        | :         |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| Teach                                | ner Ass                                                                       | essmei    | nt:       |                 | - 1               |              |                   | 2.6     | 1.0      |                     |          | 0.00         |           | <b>F</b> 1 |
| Two                                  | compon                                                                        | ents of   | In Ser    | nester          | Evalua            | $t_{100}$ (1 | SE), O            | ne Mic  | 1 Seme   | ester Ex            | aminatio | on (MS       | E) and of | ne End     |
| Seme                                 | ster Exa                                                                      | aminati   | ion (ES   | bE) hav         | ing 20            | %, 30%       | % and :           | 50% W   | eignts   | respect             | lvely.   | _            |           |            |
|                                      |                                                                               |           | Assess    |                 |                   |              |                   |         |          | <u>KS</u>           |          |              |           |            |
|                                      |                                                                               |           |           |                 |                   |              |                   |         | 20       | )                   |          |              |           |            |
| -                                    |                                                                               |           |           | <u>) し</u>      |                   |              |                   |         | 10       | )                   |          |              |           |            |
| -                                    |                                                                               |           | FC        | , <u>2</u><br>F |                   |              |                   |         | 50       | )                   |          |              |           |            |
| ISF 1                                | and IS                                                                        | F 2 are   | hased     | n assi          | onmer             | nt/decl      | ared te           | st/auiz | /semin   | <u>,</u><br>ar/Grou | n Discu  | <br>ssions e | etc       |            |
| MSE:                                 | Assess                                                                        | ment i    | s based   | 1  on  50       | % of c            | ourse (      | content           | · (Norn | nallv fi | rst three           | e modul  | es)          |           |            |
| ESE:                                 | Assessi                                                                       | nent is   | based     | on 100          | )% cou            | rse coi      | ntent w           | vith60- | 70% w    | eightag             | e for co | urse con     | ntent (no | rmally     |
| last th                              | ree mo                                                                        | dules)    | covere    | d after         | MSE.              |              |                   |         |          | 0 0                 |          |              |           | J          |
| Cours                                | se Cont                                                                       | tents:    |           |                 |                   |              |                   |         |          |                     |          |              |           |            |
| Unit 1                               | l: Intro                                                                      | oductio   | on to D   | esign '         | Thinki            | ng           |                   |         |          |                     |          |              |           |            |
| Desig                                | n Think                                                                       | ting Pr   | ocess:    | Empat           | hize, D           | efine,       | Ideate,           | Proto   | type, T  | 'est                |          |              | 6 Hrs.    |            |
| Histor                               | rical Ev                                                                      | olutior   | n and Ii  | nporta          | nce Ca            | se Stu       | dies in           | Design  | n Thinl  | king                |          |              |           |            |
| Unit 2                               | 2: Emp                                                                        | athizir   | ng and    | Probl           | em De             | finitio      | n                 |         |          |                     |          |              |           |            |
| Techn                                | iques f                                                                       | or Use    | r Resea   | arch an         | d Emp             | athy M       | lapping           | g       |          |                     |          |              | 6 Hrs.    |            |
| Defin                                | ing Pro                                                                       | blem S    | tateme    | nts Fra         | ming l            | Design       | Challe            | enges   |          |                     |          |              |           |            |
| Unit 3                               | 3: Idea                                                                       | tion Te   | echniq    | ues             | 100               |              |                   |         | ~        | , <b>.</b> .        | ,        |              | 0.11      |            |
| Brains                               | stormin                                                                       | g, Min    | d Map     | ping, a         | nd SC             | AMPE         | K. Enc            | ouragi  | ng Cre   | ativity a           | and      |              | 8 Hrs.    |            |
| Break                                | Breaking Assumptions. Idea Evaluation and Selection                           |           |           |                 |                   |              |                   |         |          |                     |          |              |           |            |

| Unit 4: Prototyping and Testing                                               |                                                                                              |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Types of Prototypes: Low-Fidelity to High-Fidelity. User Testing and          | 8 Hrs                                                                                        |  |  |  |  |  |  |  |  |
| Feedback Collection. Iterative Design and Improvements                        |                                                                                              |  |  |  |  |  |  |  |  |
| Unit 5: Design Tools and Methodologies                                        |                                                                                              |  |  |  |  |  |  |  |  |
| Introduction to Tools like Canva, Figma, Miro. Methodologies: Design 8 Hrs.   |                                                                                              |  |  |  |  |  |  |  |  |
| Sprints, Lean Design. Applying Tools to Develop Prototypes                    |                                                                                              |  |  |  |  |  |  |  |  |
| Unit 6: Design Thinking in Practice                                           |                                                                                              |  |  |  |  |  |  |  |  |
| Real-Life Applications in Engineering, Business, and Social Impact            | 8 Hrs.                                                                                       |  |  |  |  |  |  |  |  |
| Group Project: End-to-End Design Thinking Project Presentation and            |                                                                                              |  |  |  |  |  |  |  |  |
| Reflection                                                                    |                                                                                              |  |  |  |  |  |  |  |  |
| Textbooks:                                                                    |                                                                                              |  |  |  |  |  |  |  |  |
| 1. Change by Design by Tim Brown                                              |                                                                                              |  |  |  |  |  |  |  |  |
| 2. Design Thinking for Startups – Praveen Gupta                               |                                                                                              |  |  |  |  |  |  |  |  |
| 3. The Design Thinking Playbook by Michael Lewrick                            |                                                                                              |  |  |  |  |  |  |  |  |
| 4. Creative Confidence: Unleashing the Creative Potential Within Us All – Tom | 4. Creative Confidence: Unleashing the Creative Potential Within Us All – Tom Kelley & David |  |  |  |  |  |  |  |  |
| Kelley                                                                        | Kelley                                                                                       |  |  |  |  |  |  |  |  |
| 5. Design Thinking: A Guide to Creative Problem Solving for Everyone – Pava   | an Soni                                                                                      |  |  |  |  |  |  |  |  |
| 6. Design Thinking: Process and Methods Manual – Robert A. Curedale           |                                                                                              |  |  |  |  |  |  |  |  |
| 7. Designing for Growth: A Design Thinking Toolkit for Managers – Jeanne Lie  | iedtka & Tim                                                                                 |  |  |  |  |  |  |  |  |
| Ogilvie                                                                       |                                                                                              |  |  |  |  |  |  |  |  |
| Reference Books :                                                             |                                                                                              |  |  |  |  |  |  |  |  |
| 1. Design Thinking for Strategic Innovation by Idris Mootee                   |                                                                                              |  |  |  |  |  |  |  |  |
| 2. Sprint: How to Solve Big Problems and Test New Ideas in Just Five Days by  | / Jake Knapp                                                                                 |  |  |  |  |  |  |  |  |
| 3. The Art of Innovation: Lessons in Creativity from IDEO, America's Leading  | g Design Firm – Tom                                                                          |  |  |  |  |  |  |  |  |
| Kelley                                                                        |                                                                                              |  |  |  |  |  |  |  |  |
| 4. Design Thinking for Innovation – Prasad Kaipa                              |                                                                                              |  |  |  |  |  |  |  |  |
| 5. Thinking Design – S. Balaram                                               |                                                                                              |  |  |  |  |  |  |  |  |
| 6. Design Thinking and Innovation in Business – M.P. Ranjan                   |                                                                                              |  |  |  |  |  |  |  |  |
| 7. Design Thinking: The Handbook – Amit Deshmukh                              |                                                                                              |  |  |  |  |  |  |  |  |

| Title of the Course: Supply Chain Management | L | Т | Р | Credit |
|----------------------------------------------|---|---|---|--------|
| Course Code: UMEEM0504                       | 2 | 0 |   | 2      |
| Course Pre-Requisite: Nil                    |   |   |   |        |

**Course Description:** This course will outline various key concepts of supply chain management in a manufacturing or distribution firm. The course focuses on key concepts of Supply Chain Management, specifically Forecasting, Inventory, and Logistics Management.

## **Course Objectives:**

- Introduce students to the basic principles and terminology of supply chain management.
- Help students understand the role of supply chain management in mechanical engineering.
- Provide an overview of key supply chain processes such as procurement, production, and distribution.
- Familiarize students with basic tools and techniques used in supply chain analysis and optimization.

#### **Course Outcomes:**

| CO  | After the completion of the course, the student should be                                                                 | Bloom' | s Cognitive   |
|-----|---------------------------------------------------------------------------------------------------------------------------|--------|---------------|
|     | able to                                                                                                                   | level  | Descriptor    |
| CO1 | <b>Summarize</b> the fundamental concepts, objectives, and decision phases of supply chain management.                    | 2      | Understanding |
| CO2 | <b>Explain</b> the role of integration and key drivers in achieving strategic fit and enhancing supply chain performance. | 2      | Understanding |
| CO3 | <b>Apply</b> forecasting and inventory control techniques to manage demand and optimize stock levels.                     | 3      | Applying      |
| CO4 | <b>Explain</b> the role of logistics and transportation in supply chain operations.                                       | 2      | Understanding |

**CO-PO Mapping:** 

| СО  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1 | 1   | 1   | 1   | 1   |     |     |            |     |     |      |      |      | 1    |      | 1    |
| CO2 | 1   | 1   | 1   | 1   |     |     |            |     |     |      |      |      | 1    |      | 1    |
| CO3 | 2   | 2   | 2   | 2   |     |     |            |     |     |      |      |      | 1    | 2    | 2    |
| CO4 | 1   | 1   | 1   | 1   |     |     |            |     |     |      |      |      | 1    |      | 1    |
|     |     |     |     | 1   |     | L   | 1          | L   | L   |      |      | 1    |      |      |      |
|     |     |     |     |     |     |     |            |     |     |      |      |      |      |      |      |

| Assessments:                               |                           |               |                                   |          |
|--------------------------------------------|---------------------------|---------------|-----------------------------------|----------|
|                                            | Assessment                | Marks         |                                   |          |
|                                            | ESE                       | 50            |                                   |          |
| Course Contents:                           |                           | I             |                                   |          |
| Unit-1: Supply Chain Concepts              |                           |               |                                   |          |
| Introduction to Supply Chain Managem       | nent, Objectives of       | f a Supply C  | hain, Decision Phases in Supply   | 7        |
| Chain, Value Chain Process, Important      | e of Supply Chain         | n Manageme    | ent, Cycle view of Supply Chain   | Hrs.     |
| Process. Examples of Supply Chains.        |                           |               |                                   |          |
| Unit -2: Supply Chain Integration          | and Drivers               |               |                                   |          |
| Understanding the importance of integra    | ation in supply cha       | ain processes | s: Competitive and Supply Chain   |          |
| Strategies Achieving Strategic Fit. S      | CM drivers: Fran          | nework for    | Structuring Drivers Facilities,   | 8        |
| Inventory, Transportation Information,     | Sourcing, and Pr          | icing, Suppl  | y Chain Performance: Bullwhip     | Hrs.     |
| effect and reduction, Obstacles to C       | oordination in a          | supply cha    | in, Performance measurement:      |          |
| Dimension, Tools of performance measured   | surement.                 |               |                                   |          |
| Unit -3: Forecasting and Inventory M       | Ianagement                |               |                                   |          |
| Inventory Management: Basics of in         | iventory managen          | nent, Invent  | ory control models (e.g., EOQ,    |          |
| safety stock), Estimating Cycle invento    | ory costs, ABC an         | alysis and in | nventory classification, Vendor-  |          |
| managed inventory (VMI), and Just-in-      | Time (JIT) invent         | tory systems  |                                   | 8        |
| Demand Forecasting in Supply Cha           | in: Role of forec         | asting in th  | e supply chain, components of     | Hrs.     |
| forecast and forecasting methods, estin    | nating forecasted of      | lemand usin   | g various methods, Measures of    |          |
| forecast errors. (Numerical Treatment      | t is expected ba          | sed on fore   | ecasting models and inventory     |          |
| management models)                         |                           |               |                                   |          |
| Unit 4: Logistics Management:              | Logistics and             | transportat   | tion overview, the role of        | 7        |
| logistics/transportation in the supply     | chain, Wareho             | use design    | and management, Modes of          | ,<br>Hrs |
| transportation, and selection criteria for | appropriate mod           | e             |                                   | 1115.    |
| Text Books                                 |                           |               |                                   |          |
| 1. Sunil Chopra & Peter Meindl             | – Supply Chain M          | lanagement    | : Strategy, Planning, and Operati | ion,     |
| Pearson Education.                         |                           |               |                                   |          |
| 2. R. Dan Reid & Nada R. Sando             | ers – Operations I        | Managemen     | t: An Integrated Approach, Wiley  | •        |
| 3. R.P. Mohanty & S.G. Deshmu              | ı <b>kh</b> – Supply Chai | in Managem    | eent, Biztantra, New Delhi.       |          |
| 4. Ronald H. Ballou – Supply Ch            | ain Management,           | Pearson Edu   | acation.                          |          |

5. Daniel Stanton – Supply Chain Management For Dummies, Wiley.

## **Reference Books:**

- 1. Ronald H. Ballou Business Logistics Management, Prentice-Hall Inc.
- 2. David Simchi-Levi, Philip Kaminsky, & Edith Simchi-Levi Designing and Managing the Supply Chain, McGraw-Hill.
- 3. Martin Christopher Logistics and Supply Chain Management, Pearson Education.
- 4. John T. Mentzer Supply Chain Management, Sage Publications.
- 5. Chandra Mohan Production and Operations Management, Himalaya Publishing House.

| Tit                       | ام م                                                                                     | th                                                                         | o Co                           |                                     | THEAT                              |                                  | NGEED                               | . T . T                        |                        | FODV                    |                           | 1                         | r. E                     | Т                            | р                             | Cred                         | it                 |
|---------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|-------------------------------------|------------------------------------|----------------------------------|-------------------------------------|--------------------------------|------------------------|-------------------------|---------------------------|---------------------------|--------------------------|------------------------------|-------------------------------|------------------------------|--------------------|
|                           | le Ul                                                                                    |                                                                            | e Cu<br>Mai                    | ui se.<br>IIMF                      | HEAD<br>PC04                       | 531                              | NSFER                               |                                | SUKA                   | IOKY                    |                           |                           | -                        | -                            | 2                             | 1                            | n                  |
|                           | urse                                                                                     | U<br>Pre                                                                   | -Reo                           | UNIE<br>misite                      | 1 CU.                              | oo I<br>Terent                   | ial cal                             | culus                          | Inter                  | Tral co                 | ماديتان                   | s Flui                    | d mec                    | hanics                       | 2                             | 1                            |                    |
| CU                        | ui șe l                                                                                  |                                                                            | -neg                           | laisin                              | , Dill                             | ci ciit.                         | iai cai                             | curus                          | , mue                  |                         | incuru                    | 5, 1 Iui                  | u mee                    | names                        |                               |                              |                    |
| Con<br>and<br>gov         | radi<br>radi<br>rernir                                                                   | Des<br>iationg e                                                           | scrip<br>on m<br>quati         | tion:<br>node of<br>lons us         | The c<br>of hea<br>sed in          | ourse<br>at trai<br>heat t       | deals<br>nsfer<br>ransfe            | with y<br>so as<br>r.          | variou<br>to ui        | s expe<br>nderst        | erimer<br>and tl          | nts rela<br>ne fun        | ted to<br>damer          | condu<br>itals ai            | ction, o<br>nd appl           | convecti<br>ication          | on<br>of           |
| Co                        | urse                                                                                     | Ob                                                                         | jecti                          | ves:                                |                                    |                                  |                                     |                                |                        |                         |                           |                           |                          |                              |                               |                              |                    |
| •                         | CLC<br>CLC<br>heat<br>solu                                                               | D1:<br>D2:'<br>tra<br>tion                                                 | To p<br>To t<br>ansfe<br>ns fo | provic<br>rain s<br>r, so<br>r ther | le the<br>stude<br>as t<br>real li | stude<br>nts w<br>o co<br>fe pro | ents th<br>ith go<br>mprel<br>blems | ne fun<br>bod s<br>nend,<br>s. | dame<br>cienti<br>anal | ntals<br>ific a<br>yze, | of con<br>nd er<br>design | nducti<br>nginee<br>n and | on, co<br>ring l<br>crea | onvecti<br>oreadth<br>te nov | ion and<br>1 in th<br>vel pro | radiati<br>e areas<br>oducts | on.<br>5 of<br>and |
| Course Learning Outcomes: |                                                                                          |                                                                            |                                |                                     |                                    |                                  |                                     |                                |                        |                         |                           |                           |                          |                              |                               |                              |                    |
| C                         | 0                                                                                        | After the completion of the course the student should be Bloom's Cognitive |                                |                                     |                                    |                                  |                                     |                                |                        |                         |                           |                           |                          |                              |                               |                              |                    |
|                           |                                                                                          | ab                                                                         | le to                          | )                                   | -                                  |                                  |                                     |                                |                        |                         |                           |                           |                          | level                        | Desc                          | riptor                       |                    |
| C                         | 01                                                                                       | Ex<br>mo                                                                   | xplain<br>echai                | n fu<br>nisms                       | ndam                               | ental                            | s of                                | Hea                            | at                     | ]                       | Transf                    | er                        |                          | 2                            | Unde                          | erstandir                    | ng                 |
| C                         | 02                                                                                       | Develop differential equations for Heat Transfer mechanisms.               |                                |                                     |                                    |                                  |                                     |                                |                        | sfer                    | 3                         | Aţ                        | oplying                  |                              |                               |                              |                    |
| C                         | 03                                                                                       | Analyze the performance of heat transfer devices                           |                                |                                     |                                    |                                  |                                     |                                |                        |                         |                           | 4                         | An                       | alyzing                      |                               |                              |                    |
| C                         | CO4Estimate the rate of heat transfer at specified temperature<br>difference.5Evaluating |                                                                            |                                |                                     |                                    |                                  |                                     |                                |                        |                         |                           |                           |                          |                              |                               |                              |                    |
| CO                        | -PO                                                                                      | , P                                                                        | SO I                           | Mapp                                | oing:                              |                                  |                                     |                                |                        |                         |                           |                           |                          |                              | ·                             |                              |                    |
|                           | CC                                                                                       | )                                                                          | PO1                            | PO2                                 | PO3                                | PO4                              | PO5                                 | PO6                            | PO7                    | PO8                     | PO9                       | PO10                      | PO11                     | PSO1                         | PSO2                          | PSO3                         |                    |
|                           | CO                                                                                       | 1                                                                          | 3                              | 0                                   | 0                                  | 0                                | 0                                   | 0                              | 0                      | 0                       | 0                         | 0                         | 0                        | 2                            | 0                             | 1                            |                    |
|                           | CO                                                                                       | 2                                                                          | 0                              | 3                                   | 0                                  | 0                                | 0                                   | 0                              | 0                      | 0                       | 0                         | 0                         | 0                        | 0                            | 0 0                           |                              |                    |
|                           | CO                                                                                       | 3                                                                          | 0                              | 3                                   | 0                                  | 0                                | 0                                   | 0                              | 2                      | 0                       | 0                         | 0                         | 0                        | 0                            | 0                             | 0                            |                    |
|                           |                                                                                          | 4                                                                          | U                              | 3                                   | U                                  | U                                | U                                   | 0                              | U                      | U                       | 1                         | U                         | U                        | 0                            | 2                             | U                            |                    |

**CO4** 0 3 0 0 1-Low, 2- Medium, 3-High

#### Assessments :

**Teacher Assessment:** 

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE)having 50%, and 50% weights respectively

| Assessment | Marks |
|------------|-------|
| ISE        | 25    |

ESE (POE)

25

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination.

**Course Contents:** 

Note: Experiment No. 1 to 10 shall be selected for the POE examination and All should be included in Journal.

| Experiment No. 1: Heat transfer through composite wall       |         |  |  |  |  |  |
|--------------------------------------------------------------|---------|--|--|--|--|--|
| Experiment No. 2: Thermal conductivity of metal rod          |         |  |  |  |  |  |
| Experiment No. 3 : Heat transfer through lagged pipe         |         |  |  |  |  |  |
| Experiment No. 4 : Thermal conductivity of insulating powder | 02 Hrs. |  |  |  |  |  |
| Experiment No. 5: Heat transfer by natural convection        | 02 Hrs. |  |  |  |  |  |
| Experiment No. 6 : Heat transfer by forced convection        | 02 Hrs. |  |  |  |  |  |
| Experiment No. 7 : Stefan -Boltzmann apparatus               | 02 Hrs. |  |  |  |  |  |
| Experiment No. 8 : Emissivity measurement apparatus          | 02 Hrs. |  |  |  |  |  |
| Experiment No. 9 : Heat transfer through pin fin             | 02 Hrs. |  |  |  |  |  |
| Experiment No.10: Parallel and counter flow heat exchanger   | 02 Hrs. |  |  |  |  |  |
| Experiment No. 11: Heat pipe demonstration                   | 02 Hrs. |  |  |  |  |  |

## Textbooks:

1. Heat Transfer: A Practical Approach, Yunus A. Cengel, McGraw-Hill Higher Education; 2 edition

2. Fundamentals of Heat & Mass Transfer ,7th Edition, Frank P. Incropera, Wiley.

**3.** A Course in Heat and Mass Transfer,: S. C. Arora (Author), S. Domkundwar (Author), Anand V. Domkundwar

4 Heat and Mass transfer: J Holman (Author), Souvik Bhattacharyya, McGraw Hill Education; 10 edition

5. Heat Transfer- Thermal Management of Electronics, Younes Shabany, CRC Press, Indian Edition.

## **Reference Books:**

1 Fundamentals of Engineering Heat and mass trasnfer, R C Sachdeva, NEW AGE; Fourth edition

2. Heat And Mass Transfer, Data Book, C.P. Kothandaraman, New Age International Private Limited; Ninth edition.

3. Heat Transfer Laboratory Manual, Prof. Abdul Matheen, Firewall Media, 2007.

| Title of the Course: Mechanical Vibrations Laboratory | L | Т | Р  | Credit |
|-------------------------------------------------------|---|---|----|--------|
| CourseCode:UMEPC0532                                  | - | - | 02 | 01     |

Course Pre-Requisite: Basics of mathematics, physics, Dynamics of Machines

**Course Description:** Many practical applications need investigation of Vibration such as machines, engines, turbines, structures, etc. Study of causes and effects of vibrations and analysis which is necessary to improve performance of system and to optimize the system at both design stage and application stage. The subject contains - Introduction to vibrations, Single Degree of freedom Free and Forced Vibrations, Vibration Measurement along with its Applications.

#### **Course Objectives:**

0

- 1. To carry out study of causes and effects of unbalance on Vibrations.
- 2. To take overview of basic concepts of vibration analysis.
- 3. To study vibration analysis of Single degree of freedom systems.
- 4. To acquaint students with the principles of vibration measuring instruments.

| CourseLearningOutcomes | : |
|------------------------|---|
|                        |   |

| CO       | Aft           | After the completion of the course the student should be    |        |        |       |         |         |         |       |        |       | Bloom's Cognitive |      |               |   |  |
|----------|---------------|-------------------------------------------------------------|--------|--------|-------|---------|---------|---------|-------|--------|-------|-------------------|------|---------------|---|--|
|          | abl           | e to                                                        |        |        |       |         |         |         |       |        |       | level             | Des  | criptor       |   |  |
| CO1      | Exp           | olain                                                       | funda  | ament  | als o | f Bal   | lancin  | g an    | d Vi  | bratio | n of  | II                | Und  | Understanding |   |  |
|          | Me            | Mechanical systems.                                         |        |        |       |         |         |         |       |        |       |                   |      |               |   |  |
| CO2      | Solv          | Solve numerical of natural frequency of mechanical system   |        |        |       |         |         |         |       |        |       | III               | App  | olying        |   |  |
|          |               |                                                             |        |        |       |         |         |         |       |        |       |                   |      |               |   |  |
| CO3      | An            | Analyze vibratory response of mechanical system. IV Analyze |        |        |       |         |         |         |       |        |       |                   | lyze |               |   |  |
| CO4      | Dev           | velop                                                       | mathe  | ematic | al mo | odel to | o repre | esent o | dynan | nic sy | stem. | V                 | Des  | ign           |   |  |
|          | CO-POMapping: |                                                             |        |        |       |         |         |         |       |        |       |                   |      |               |   |  |
|          |               |                                                             |        |        |       |         |         |         |       |        |       |                   |      |               |   |  |
| со       | PO1           | PO2                                                         | PO3    | PO4    | PO5   | PO6     | P07     | PO8     | PO9   | P10    | PO11  | PSO1              | PSO2 | PSO3          |   |  |
| CO1      | 2             | 1                                                           | 0      | 0      | 0     | 0       | 0       | 0       | 0     | 0      | 1     | 1                 | 0    | 0             | ł |  |
|          | 2             |                                                             | 0      |        |       | 0       |         | 0       |       |        |       | _ <b>_</b>        |      |               |   |  |
| CO2      | 3             | 2                                                           | 1      | 1      | 1     | 0       | 0       | 0       | 1     | 0      | 2     | 0                 | 0    | 0             | 1 |  |
|          |               |                                                             |        |        |       |         |         |         |       |        |       |                   |      |               |   |  |
| CO3      | 1             | 2                                                           | 1      | 3      | 3     | 0       | 0       | 0       | 1     | 1      | 2     | 2                 | 2    | 1             |   |  |
| <u> </u> | 2             | 2                                                           | 2      | 2      | 1     | -       | 1       |         | 2     | 1      | 2     | 2                 | 2    | 1             |   |  |
| 04       | 2             | 2                                                           | 2      | 2      | T     | 2       | T       | 0       | 2     | 1      | 2     | 2                 | 2    | T             |   |  |
|          | I             | I                                                           | I      | I      | I     | L       | I       | L       | I     | I      |       | I                 | I    | I             | 1 |  |
| 1.10w    | v 2.m         | ediun                                                       | n 3·hi | σh     |       |         |         |         |       |        |       |                   |      |               |   |  |
| 1.10 0   | •, 2.111      | cului                                                       |        | 511    |       |         |         |         |       |        |       |                   |      |               |   |  |

# Assessments:

## TeacherAssessment:

One component of In Semester Evaluation (ISE) having 100% weightage.

| Assessment | Marks |
|------------|-------|
| ISE        | 25    |
| POE        | 25    |

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

## LABORATORY CONTENT

#### Experiment No. 1:-Experiment on Balancing of rotary masses (Static and Dynamic).

Aim & Objectives: To observe the principles of static and dynamic balancing.

Outcomes: Able to analyze rotary system for static and dynamic balancing.

Experimentation: To arrange the given masses in Angular and linear positions for complete static and Dynamic balance.

Results and Discussions: To find Angular and linear positions of masses analytically and to verify the results.

## Experiment No. 2:- Experiment on equivalent spring mass system.

Aim & Objectives: To determine Natural Frequency of equivalent spring mass system. Outcomes: Able to determine Natural frequency experimentally.

Experimentation: Determination of time period and natural frequency.

Results and Discussions: Comparison between Analytical and Experimental natural Frequency.

# Experiment No.3 :-Determination of logarithmic decrement for single DOF damped system

Aim & Objectives: To determine logarithmic decrement for Torsionally vibratory system. Outcomes: Able to analyze effect of damping on vibratory system

Experimentation: Plotting the logarithmic decrement of Torsionally vibratory system.

Results and Discussions: Calculation of damping coefficient for vibrating systems.

## **Experiment No. 4:- Experiment on study of forced vibration characteristics**

Aim & Objectives: To study effect of exciting force on characteristics of vibrations

Outcomes: Able to determine forced vibration characteristics like Amplitude and Frequency.

Experimentation: To plot the graph Amplitude vs Time for forced vibrations

Results and Discussions: Determination of Maximum Amplitude and Natural Frequency for the Systems subjected to forced vibrations.

## Experiment No. 5:- Experiment on Whirling of Shaft

Aim & Objectives: To study whirling of shafts

Outcomes: Able to measure speed of shaft at which whirling takes place

Experimentation: To measure speed of rotating shaft which is whirling.

Results and Discussions: To measure critical speed of whirling.

## ExperimentNo. 6:Study and demonstration of vibration measuring instruments.

Aim & Objectives: To study various Vibration measuring instruments.

Outcomes: Able to select suitable vibration measuring instrument for specific application.

Experimentation: To measure vibration parameters of machineries.

Results and Discussions: To measure vibration parameters and its significance.

**Experiment No.7**: Study of signal analysis, filtering and data acquisition.

Aim & Objectives: To study techniques of signal analysis, filtering and data acquisition.

Outcomes: Able to select suitable techniques of signal analysis, filtering and data acquisition for suitable application.

Experimentation: Able to select suitable techniques of signal analysis, filtering and data acquisition.

Results and Discussions: To process the signal analysis, filtering and data acquisition for mechanical systems.

**Experiment No.8**: Case study of Bearing fault analysis using vibration measurement.

Aim & Objectives: To analyze various bearing faults and its signals.

Outcomes: To identify bearing faults with vibration signals.

**Experiment No.9** : Case study of Gear box fault analysis using vibration measurement.

Aim & Objectives: To analyze various gear faults and its signals.

Outcomes: To identify gear faults with vibration signals.

Experiment No 10:- Industrial visit based on above syllabus.

Aim & Objectives : To make students acquainted to balancing of components like Gears, Pulleys used in Industry.

Outcomes: Able to understand industrial procedure for Static and Dynamic Balancing.

Experimentation: Demonstration of Measurement and removal of unbalance of Pulley using Balancing Machine.

MINIMUM EIGHT (08) EXPERIMEMTS ARE TO BE PERFORMED

Textbooks:

1. Ratan S.S, "Theory of Machines", Tata McGraw Hill, New Delhi, 3rd Edition, 2011.

2. Sadhu Singh, "Theory of Machines", Pearson Education, 2nd Edition, 2009

3. H. G. Phakatkar, "Theory of Machines I", Edition 2009. Nirali Publication, 5th Edition 2009.

4. Mechanical Vibrations by Grover G.K., Nemchand Publications.

References:

1. Hamilton H Mabie and Charles F Reinholtz, (1987), "Mechanisms and Dynamics of Machinery", Fourth Edition, John-Wiley and Sons, Inc., New York.

- 2. Ghosh A. and Mallick A.K., (1988), "Theory of Mechanisms and Machines",
- Affiliated East-West Press Pvt. Ltd., New Delhi.
- 3. William T Thomson, Marie Dillon Dahleh and Chandramouli Padmanabhan, (2004),
- "Theory of Vibration with applications", Fifth Edition, Pearson Education Publishers.
- 4. Theory of Machines by Dr. V.P.Singh, Dhanpat Rai Publications.
- 5. Theory of Machines by Ballaney, Khanna Publications.
- 6. Mechanical Vibrations by S.S.Rao, Pearson Education Publications
- 7. Theory of vibrations with applications by W.T. Thomson (CBS Publications)
- 8. Kinematics, Dynamics and Design of Machinery by Walidron, Wiley India Publi.

9. Theory of Vibration with applications by W.T.Thomson M.D. Dahleh, C.Padmanabhan Pearson Education

| Title of                                                                                                       | f the Course: Advance Automobile Engineering                                                                                                                                                                                                                                                                | L                  | Т                    | Р                   | Credit                     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|---------------------|----------------------------|--|--|--|--|--|
| Lab<br>Course                                                                                                  | code: UMEVS0533                                                                                                                                                                                                                                                                                             | 0                  | 0                    | 2                   | 1                          |  |  |  |  |  |
| <b>Course Pre-Requisite:</b> Basic Mechanical Engineering, I. C Engine, Basic knowledge about electric motors. |                                                                                                                                                                                                                                                                                                             |                    |                      |                     |                            |  |  |  |  |  |
| Course<br>hybrid a<br>motor c                                                                                  | <b>Course Description:</b> This course discusses the fundamental concepts, principles and analysis of hybrid and electric vehicles. This course discusses the various EV subsystems such as electric motors, motor controllers, energy storage devices, battery management system, charging technology etc. |                    |                      |                     |                            |  |  |  |  |  |
| Course<br>expose<br>hybrid v                                                                                   | <b>Objectives:</b> To impart the knowledge about electric veh the students to various drive technology and energy storage vehicles.                                                                                                                                                                         | icles a<br>e techr | nd hybr<br>iology re | id vehic<br>equired | les. To<br>in electric and |  |  |  |  |  |
| Course                                                                                                         | E Learning Outcomes:                                                                                                                                                                                                                                                                                        |                    |                      |                     |                            |  |  |  |  |  |
| CO                                                                                                             | After the completion of the course the student sho                                                                                                                                                                                                                                                          | ould b             | e Blo                | oom's (             | Cognitive                  |  |  |  |  |  |
|                                                                                                                | able to                                                                                                                                                                                                                                                                                                     |                    | lev                  | el De               | escriptor                  |  |  |  |  |  |
| CO1                                                                                                            | Understand basic concepts of electric vehicles.                                                                                                                                                                                                                                                             |                    | II                   | Ur                  | derstanding                |  |  |  |  |  |
| CO2                                                                                                            | Learn the ability to understand different systems and components.                                                                                                                                                                                                                                           |                    | II                   | II Understanding    |                            |  |  |  |  |  |
| C <b>O</b> 3                                                                                                   | Identify electric vehicle troubleshooting and remedie                                                                                                                                                                                                                                                       | es.                | III                  | Ap                  | plying                     |  |  |  |  |  |

# **CO-PO Mapping:**

| CO         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1        | 2   | 1   |     |     |     |     |     |     |     | 1    |      |      |      |      |
| CO2        | 2   | 1   |     |     |     | 2   | 1   |     |     |      |      | 1    |      |      |
| <b>CO3</b> | 2   | 1   |     |     |     | 2   | 1   |     |     |      |      | 2    | 1    | 2    |

# Assessments :

## **Teacher Assessment:**

| Assessment | Marks |
|------------|-------|
| ISE        | 25    |

| Course Contents:                                                         |        |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|
| Experiment No. 1:                                                        | 2 Hrs. |  |  |  |  |  |  |  |
| Study and demonstration of four-wheeler chassis layout and vehicle body  |        |  |  |  |  |  |  |  |
| parts and its materials.                                                 |        |  |  |  |  |  |  |  |
| Experiment No. 2:                                                        | 2 Hrs. |  |  |  |  |  |  |  |
| Study and Demonstration of working of single plate automobile clutch and |        |  |  |  |  |  |  |  |
| synchromesh gearbox.                                                     |        |  |  |  |  |  |  |  |
| Experiment No. 3:                                                        | 2 Hrs. |  |  |  |  |  |  |  |
| Study and demonstration of final drive and differential.                 |        |  |  |  |  |  |  |  |

| Experiment No. 4:                                                                          | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Study and Demonstration of Control systems – Braking system, steering                      |                                                                                |  |  |  |  |  |  |  |  |  |
| system.                                                                                    |                                                                                |  |  |  |  |  |  |  |  |  |
| Experiment No. 5:                                                                          | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
| Study and Demonstration of automobile systems –Suspension system,                          |                                                                                |  |  |  |  |  |  |  |  |  |
| Electrical System.                                                                         |                                                                                |  |  |  |  |  |  |  |  |  |
| Experiment No. 6:                                                                          | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
| Demonstration of typical hybrid vehicle construction and operation.                        |                                                                                |  |  |  |  |  |  |  |  |  |
| Experiment No. 7:                                                                          | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
| Regenerative braking with BLDC motor using bidirectional converter.                        |                                                                                |  |  |  |  |  |  |  |  |  |
| Experiment No. 8:                                                                          | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
| Study of AC charger for electric vehicle.                                                  |                                                                                |  |  |  |  |  |  |  |  |  |
| Experiment No. 9:                                                                          | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
| Experiment on wheel balancing and front wheel alignment.                                   |                                                                                |  |  |  |  |  |  |  |  |  |
| Experiment No. 10:                                                                         | 2 Hrs.                                                                         |  |  |  |  |  |  |  |  |  |
| Visit to EV servicing station for study of vehicle maintenance, repairs and                |                                                                                |  |  |  |  |  |  |  |  |  |
| report.                                                                                    |                                                                                |  |  |  |  |  |  |  |  |  |
| Textbooks:                                                                                 |                                                                                |  |  |  |  |  |  |  |  |  |
| 1. Kripal Singh, Automobile Engineering Vol II, Standard Publishers Distributors, Tenth    |                                                                                |  |  |  |  |  |  |  |  |  |
| Edition, 2007                                                                              |                                                                                |  |  |  |  |  |  |  |  |  |
| 2. "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", C. |                                                                                |  |  |  |  |  |  |  |  |  |
| Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons, 2011                                    |                                                                                |  |  |  |  |  |  |  |  |  |
| 3. "Hybrid Electric Vehicles: Energy Management Strategies", S. Onori, L. Serrao and G.    |                                                                                |  |  |  |  |  |  |  |  |  |
| Rizzoni, Springer, 2015                                                                    |                                                                                |  |  |  |  |  |  |  |  |  |
| 4. P S Gill, Automobile Engineering II, S K Kataria and Sons, Second Edit                  | ion, 2012                                                                      |  |  |  |  |  |  |  |  |  |
| 5. R K Rajput, Automobile Engineering, Laxmi Publications, First Edition,                  | 5. R K Rajput, Automobile Engineering, Laxmi Publications, First Edition, 2007 |  |  |  |  |  |  |  |  |  |
| 6. Automobile Engineering", G.B.S. Narang., Khanna Publication, 3rdEditie                  | on.                                                                            |  |  |  |  |  |  |  |  |  |
| Defenence Deelver                                                                          |                                                                                |  |  |  |  |  |  |  |  |  |
| 1 James Larminia I Lowry "Electric Vahiele Technology Evalened" Let                        | n Wiley &                                                                      |  |  |  |  |  |  |  |  |  |
| 1. James Lammine, J. Lowry, Electric Venicle Technology Explaned, Jor<br>Song Ltd. 2002    | in whey a                                                                      |  |  |  |  |  |  |  |  |  |
| 2 M Ehroni V Goo S E Gou and A Emodi "Madam Electric Hybrid Electric and                   |                                                                                |  |  |  |  |  |  |  |  |  |
| Eval Call Vahielas: Fundamentals Theory and Design" CDC Pross 2004                         |                                                                                |  |  |  |  |  |  |  |  |  |
| 2 S. Onori I. Sorreg and G. Dizzoni "Hybrid Electric Vehicles: Energy N                    | 04.<br>Ionogoment                                                              |  |  |  |  |  |  |  |  |  |
| Strategies". Springer, 2015.                                                               | Strategies". Springer, 2015.                                                   |  |  |  |  |  |  |  |  |  |
| 4. Igbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals". C                   | RC Press.                                                                      |  |  |  |  |  |  |  |  |  |
| 2003.                                                                                      | 20,                                                                            |  |  |  |  |  |  |  |  |  |
| 5. Newton, Steeds and Garrett, The Motor Vehicle, Butterworths Internatio                  | nal Edition,                                                                   |  |  |  |  |  |  |  |  |  |
| 11th Edition, 1989                                                                         |                                                                                |  |  |  |  |  |  |  |  |  |
|                                                                                            |                                                                                |  |  |  |  |  |  |  |  |  |

| Title of the Course: Community Engagement Project                                                                                |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         | L      | T       | P      | Cr    | edit   |        |        |      |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------|------------------------|--------|---------|--------|---------|--------|---------|--------|-------|--------|--------|--------|------|
| Course Code: UNELLUS/I<br>Course Pro Dequisite: Posic sciences, machanical anginagring sciences                                  |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         | 0      | 0       | 2      |       | L      |        |        |      |
| Course Description: New generation of students are increasingly unaware of local rural and                                       |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| nori urban realities surrounding their UELs, as repid urbanization has been accurring in India                                   |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| A large percentage of Indian perplation continues to live and work in much and peri when                                         |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| A large percentage of indian population continues to live and work in rural and peri-urban                                       |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| area                                                                                                                             | as of u                                                                                                                                                                                  |               | untry. | w ni   | ie var                 | lous   | schen   | nes ai | na pro  | ogram  | is of c | ommu   | inity | / serv | /1ce r | ave t  | been |
| und                                                                                                                              | lertake                                                                                                                                                                                  | n by          | HEI    | s, th  | ere 1                  | s no   | sing    | ular   | provi   | sion   | of a    | well-  | de    | signe  |        | ommu   | nity |
| eng                                                                                                                              | engagement course that provides opportunities for immersion in rural realities. Such a course will enable students to learn about aballenges food by subcrable bougsholds and develop an |               |        |        |                        |        |         |        |         |        |         |        | urse  |        |        |        |      |
| will enable students to learn about challenges faced by vulnerable households and develop an                                     |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| understanding of local wisdom and lifestyle in a respectful manner.                                                              |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| Co                                                                                                                               | urse O                                                                                                                                                                                   | bject         | ives:  |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| 1. To make students more aware of the living conditions of those in their immediate                                              |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| vicinity and to assist them in realizing the harsh truths of society.                                                            |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| 2. To help the students transform their mindset and cultivate societal awareness,                                                |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| sensitivity, accountability, and responsibility.                                                                                 |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| 3. To help students to initiate developmental activities in the community in coordination with public and government authorities |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| with public and government authorities.                                                                                          |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| 4. To enable students to apply their knowledge to the betterment of their local communities                                      |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| Co                                                                                                                               | Course Learning Outcomes:                                                                                                                                                                |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
|                                                                                                                                  |                                                                                                                                                                                          | fter t        | he co  | mple   | tion o                 | of the | cour    | se th  | e stud  | lent s | hould   | be al  | ole ( | :0     |        |        | ٦    |
|                                                                                                                                  | 0.1 H                                                                                                                                                                                    |               |        | 1      | 1                      | 1.1    |         |        | 1.00    | 0.00   |         | •. •   |       | 1      |        | 1      | _    |
| <b>CO1 IDENTIFY</b> the real-world problems and <b>PROPOSE</b> a suitable solution based on                                      |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
|                                                                                                                                  | the tundamentals of mechanical engineering                                                                                                                                               |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
|                                                                                                                                  | 02 A<br>03 U                                                                                                                                                                             | INAL<br>SE o  | f tec  | hnolo  | $\frac{550115}{00}$ it | nro    | nosed   |        | ilu co. | d den  | nonstr  | ate le | arni  | no ii  | n ora  | l and  |      |
|                                                                                                                                  | written form                                                                                                                                                                             |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| C                                                                                                                                | 04 D                                                                                                                                                                                     | EVE           | LOP    | abilit | y to v                 | vork a | as an   | indivi | dual    | and as | s a tea | m mei  | nbe   | r.     |        |        | -    |
|                                                                                                                                  |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| CO                                                                                                                               | -PO N                                                                                                                                                                                    | Iappi         | ing:   |        | 1                      | 1      | 1       |        |         | 1      |         |        | 1     |        |        |        | n    |
|                                                                                                                                  | CO                                                                                                                                                                                       | PO1           | PO2    | PO3    | PO4                    | PO5    | PO6     | PO7    | PO8     | PO9    | PO10    | P011   | PS    | 01 P   | SO2    | PSO3   |      |
|                                                                                                                                  | COI                                                                                                                                                                                      | 2             | 2      | 2      |                        | 2      | 2       |        |         |        |         |        | 4     |        | 1      | 2      |      |
|                                                                                                                                  | CO2                                                                                                                                                                                      | 3             | 2      | 2      | 3                      | 2      |         |        |         |        | 1       | 2      | 2     | 2      | 2      | 2      |      |
|                                                                                                                                  | <u>CO3</u>                                                                                                                                                                               |               |        |        |                        | 3      | 2       | 3      |         | 3      |         |        | 1     |        | 1      | 1      |      |
|                                                                                                                                  | 0.03                                                                                                                                                                                     |               |        |        |                        | 5      | 2       | 5      |         | 5      |         |        |       |        | 1      | 1      |      |
|                                                                                                                                  | CO4                                                                                                                                                                                      |               |        |        |                        |        |         |        | 3       |        |         |        |       |        |        |        |      |
| Δςς                                                                                                                              | essme                                                                                                                                                                                    | nts •         |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| Tea                                                                                                                              | icher A                                                                                                                                                                                  | Asses         | smen   | t:     |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| Assessment                                                                                                                       |                                                                                                                                                                                          |               |        |        |                        |        |         |        | Marks   |        |         |        |       |        |        |        |      |
| In Semester Evaluation (ISE)                                                                                                     |                                                                                                                                                                                          |               |        |        |                        |        |         |        | 25      |        |         |        |       |        |        |        |      |
| ISE are based on Field Project assigned/Models preparation/ Presentation/ Group                                                  |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        | oup     |        |       |        |        |        |      |
| Discussion/ etc.                                                                                                                 |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| Course Contents:                                                                                                                 |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| Pre                                                                                                                              | amble                                                                                                                                                                                    | <u>:</u> To a | achiev | ve the | e obje                 | ctives | s of th | e soc  | io-eco  | onom   | ic deve | elopm  | ent   | of Ne  | ew In  | dia, F | IEIs |
| can play an important role through active community engagement. This approach will also                                          |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |
| contribute to improve the quality of both teaching and research in HEIs in India. India is a                                     |                                                                                                                                                                                          |               |        |        |                        |        |         |        |         |        |         |        |       |        |        |        |      |

signatory to the global commitment for achieving Sustainable Development Goals (SDGs) by 2030. Achieving these 17 SDG goals requires generating locally appropriate solutions. Community engagement should not be limited to a few social science disciplines alone. It should be practiced across all disciplines and faculties of HEIs. These can take the forms of enumerations, surveys, awareness camps and campaigns, training, learning manuals/films, maps, study reports, public hearings, policy briefs, cleanliness and hygiene teachings, legal aid clinics, etc. For example, students of chemistry can conduct water and soil testing in local areas and share the results with the local community. Students of science and engineering can undertake research in partnership with the community on solid and liquid waste disposal Therefore, students are being encouraged to foster social responsibility and community engagement in their teaching and research.

The Community Engagement Project is an experiential learning approach that combines education, learning, community development, and meaningful community service.

• The Community Engagement Project involves students in community development and service activities and applies the experience to personal and academic development.

• The purpose of the Community Engagement Project is to establish a mutually beneficial relationship between the college and the community. The targeted contribution of college students to the village/local development will benefit the community. The college has an opportunity to help students become more socially conscious and responsible while simultaneously becoming a socially conscious organization.

#### **Group Structure:**

Working in supervisor/mentor –monitored groups. The students plan, manage and complete a task/project/activity which addresses the stated problem.

1. Create groups of 4-6 students in each class.

2. A supervisor/mentor teacher is assigned to 4-6 groups or one batch.

#### Procedure to implement community engagement project:

• A group of students or a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.

• If required, students of the department will be divided into groups and each group is allotted to a faculty member of the department.

• The group of students will be associated with a government official / village authorities /NGOs etc. concerned, allotted by the district administration, during the duration of the project.

• The Community Engagement Project is a two-fold one –First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area.

#### **Recommended field-based project activities (Tentative):**

Community engagement field projects for mechanical engineering could include:

- Developing sustainable energy solutions like solar water pumps or wind turbine systems for rural communities,
- Designing accessible assistive devices for people with disabilities,
- Creating energy-efficient cooling systems for schools or public buildings,
- Building water filtration systems, or
- Developing educational workshops on basic mechanical concepts for local youth

Specific project ideas based on different mechanical engineering focuses:

- Renewable Energy:
- Solar-powered water pumping system:
- Design and build a solar-powered water pump for villages with limited access to clean water.

- Small-scale wind turbine:
- Develop a small-scale wind turbine to generate electricity for community centers or homes in windy areas.
- Solar cooker design:
- Create efficient solar cookers to reduce reliance on firewood in rural communities.
- Accessibility and Assistive Technology:
- Wheelchair accessible ramps: Design and build ramps for public buildings to improve accessibility.
- Prosthetic limb modifications: Collaborate with local clinics to design and fabricate customized prosthetic limbs.
- Adaptive tools for people with disabilities: Develop customized tools for individuals with physical limitations.
- Energy Efficiency:
- Building energy audit:
- Conduct energy audits in schools or community centers to identify areas for improvement and suggest retrofitting solutions.
- Passive cooling systems:
- Design and implement passive cooling systems (like natural ventilation) in buildings to reduce energy consumption.
- Efficient water heating systems:
- Develop and install more efficient water heating systems in community facilities.
- Waste Management and Recycling:
- Waste sorting and recycling system: Design a waste sorting and recycling system for schools or community centers.
- Composting systems: Develop and implement community-scale composting systems to reduce organic waste.
- Upcycling projects: Design and build useful items from recycled materials.
- Education and Outreach:
- STEM workshops for youth:
- Conduct hands-on mechanical engineering workshops for local students to spark interest in STEM fields.
- Community awareness campaigns:
- Educate the community about energy conservation and sustainable practices through presentations and informational materials.
- Technical skills training:
- Provide basic mechanical skills training to community members to enable self-repair of appliances or equipment.
- Product market awareness program
- Services market awareness program
- Road safety awareness program

#### **Evaluation & Continuous Assessment**

The comprehensive and ongoing monitoring and evaluation of student achievement is key to the project concept's effectiveness. It is recommended that regular reporting of all actions be
mandated. Students must maintain a project log book at the department with regular evaluations of their project work. The following should be recorded in the project log book:

1. Student guidance and information

2. The project guide's weekly oversight,

3. Evaluation form for the project guide to review the project work

Recommended parameters for assessment, evaluation and weightage:

1. Idea Inception (kind of survey). (10%)

2. Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents). (15%)

3. Attended reviews, poster presentation and model exhibition. (10%)

4. Demonstration (Poster Presentation, Model Exhibition etc). (10%).

5. Awareness /Consideration of - Environment/ Social /Ethics/ Safety measures/Legal aspects. (5%)

6. Outcome (physical model/prototype/ virtual model/ product development/ assembly & disassembly and analysis of standard mechanism or system, design and development of small application, design of control systems, development of various systems/ /Hackathon/ application development and similar activities/ System performance and analysis) (40%) 7. Participation in various competitions/ publication/ copyright/ patent) (10%)

The review/ progress monitoring committee shall be constituted by head of departments of each institute.

The progress of project to be evaluated on continuous basis, minimum two reviews in each semester.

• In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

#### Project shall be assessed based on following points;

- ✓ Quality of problem and Clarity
- ✓ Innovativeness in solutions
- ✓ Cost effectiveness and Societal impact
- ✓ Full functioning of working model as per stated requirements
- ✓ Effective use of skill sets
- ✓ Effective use of standard engineering norms
- ✓ Contribution of an individual's as member or leader
- ✓ Clarity in written and oral communication

#### **Report Format**

- 1. **Project introduction:** Introduce the project and its objectives
- 2. Project details: Include the where, when, and how of the project
- 3. Participants: Describe who participated in the project
- 4. Outcomes: Share the outcomes of the project
- 5. Next steps: Provide recommendations and next steps for the project

#### **Project Evaluation:**

- 1. Activity book: 5 marks
- 2. Project implementation working model: 10 marks
- 3. Presentation: 5 marks
- 4. Report: 5 marks

| Data Science3003Course Code: UMEMM05413003Course Pre-Requisite:<br>This course requires the basic knowledge of the following:<br>1Basics of Python Programming       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code: UMEMM0541         Course Pre-Requisite:         This course requires the basic knowledge of the following:         1       Basics of Python Programming |
| Course Pre-Requisite:<br>This course requires the basic knowledge of the following:                                                                                  |
| This course requires the basic knowledge of the following:                                                                                                           |
| 1 Basics of Python Programming                                                                                                                                       |
| 1. Dasies of Lython Flogramming                                                                                                                                      |
| 2. Basics of Mathematics and Statistics                                                                                                                              |
| Course Description:                                                                                                                                                  |
| Students need to develop the skills required for Machine Learning Technologies with use of Python to analyz                                                          |
| data, create beautiful visualizations, and problem solving using powerful machine learning algorithm                                                                 |
| Machine learning heavily relies on mathematics, statistics, and programming expertise to develop and fine-tur                                                        |
| algorithms. Data science requires a multidisciplinary skill set that includes knowledge of statistic                                                                 |
| Course Objectives                                                                                                                                                    |
| 1. To novice the basics of Duthen ano group in a and from the installation of various Duthen                                                                         |
| 1. To revise the basics of Fython programming and learn the installation of various Fython                                                                           |
| Libraries.                                                                                                                                                           |
| 2. To explain the basics of NumPu and Dandag                                                                                                                         |
| 5. To explain the applications of Machine Learning and Data Science using Puthen programming                                                                         |
| 4. To explain the applications of Machine Learning and Data Science using Lython programming.                                                                        |
| Course Learning Outcomes:                                                                                                                                            |
| CO After the completion of the course the student should be Bloom's Cognitive                                                                                        |
| able to                                                                                                                                                              |
|                                                                                                                                                                      |
| <b>CO1</b> Demonstrate the installation of various Python libraries.                                                                                                 |
|                                                                                                                                                                      |
| CO2 Demonstrate the use of NumPy and Pandas for data handling.                                                                                                       |
| II Understanding                                                                                                                                                     |
| iii Onderstanding                                                                                                                                                    |
| Apply the Date Cleaning and Begression techniques to various                                                                                                         |
| CO3 Apply the Data Cleaning and Regression techniques to various                                                                                                     |
| CO3     Apply the Data Cleaning and Regression techniques to various practical problems.     III     Applying                                                        |
| CO3       Apply the Data Cleaning and Regression techniques to various practical problems.       III       Applying         III       IIII       Applying            |

# CO-PO-PSO Mapping:

| Course   | PO's |   |   |   |   |   |   |   |   |    | PSO's |   |   |   |
|----------|------|---|---|---|---|---|---|---|---|----|-------|---|---|---|
| Outcomes | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11    | 1 | 2 | 3 |
| CO1      | 1    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0     | 1 | 0 | 3 |
| CO2      | 1    | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0  | 0     | 3 | 0 | 3 |
| CO3      | 1    | 1 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0  | 0     | 3 | 0 | 3 |
| CO4      | 1    | 1 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0  | 3     | 3 | 0 | 3 |

# Assessments :

ESE: Assessment is based on 100% course content equal weightage for all units.

| Course Contents:                                                                                |               |
|-------------------------------------------------------------------------------------------------|---------------|
| Unit 1: Introduction                                                                            | 7 Hrs.        |
| Python for Data Analysis, essential python libraries, Installation and setup of different       |               |
| operating systems, important development environments (IDEs) and text editors, brief            |               |
| background of python, decision structures and Boolean logic, looping, built-in data types,      |               |
| and functions                                                                                   |               |
| Unit 2: Introduction to NumPy and Pandas                                                        | 8 Hrs.        |
| Introduction to NumPy, What is NumPy, Key Features of NumPy, Array Operations,                  |               |
| Random Number Generation                                                                        |               |
| Introduction to Pandas, what is Pandas, Overview of Pandas for data manipulation and            |               |
| analysis, Key Features of Pandas, Pandas Series, Pandas Data Frame, Data Manipulation           |               |
| with Pandas: Sorting, filtering, and grouping data.                                             |               |
| Unit 3: Data Cleaning and Preparation                                                           | 8 Hrs.        |
| Handling missing data-filtering out missing data, filling in missing data, data                 |               |
| transformation-removing duplicates, transforming data using a function or mapping,              |               |
| replacing values, string manipulation                                                           |               |
| Matplotlib and libraries, figures and subplots, colors, markers and line styles, ticks, labels, |               |
| and legends, Annotations and drawing on a subplot, saving plots to file, plotting with          |               |
| pandas-line plot, bar plot, histogram and density plots, scatter and point plots.               |               |
| Unit 4: Introduction to Machine Learning                                                        | 7 <b>Hrs.</b> |
| Introduction to machine learning – definition, terminology. Types of machine learning –         |               |
| supervised learning, unsupervised learning, semi-supervised learning, reinforcement             |               |
| learning. Machine learning process. Performance metric in machine learning. Tools and           |               |
| frameworks.                                                                                     |               |
| Unit 5: Regression and Classification                                                           | 9 Hrs.        |
| Regression –simple linear regression, multiple linear regression, Assumptions in regression     |               |
| analysis, other regression techniques, improving accuracy of the linear regression model,       |               |
| polynomial regression model, logistic regression. Support Vector Machines                       |               |
| Decision trees – definition, terminology, the need, advantages, and limitations. Constructing   |               |
| and understanding decision trees. Common problems with decision trees. Decision tree            |               |
| algorithms – ID3, random forest, examples, cross-validation, confusion matrix, precision-       |               |
| recall.                                                                                         |               |
| Unit 6: Applications of Machine Learning                                                        | 6 <b>Hrs.</b> |
| Predictive Maintenance, Quality Control and Defect Detection, Design Optimization,              |               |
| Robotics and Automation, Research papers and journals on specific applications in               |               |
| Mechanical Engineering                                                                          |               |
| Textbooks:                                                                                      |               |
| 1. Wes McKinney, "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and              |               |
| IPython", O'Reilly, 2nd Edition, 2018.                                                          |               |
| 2. WesLey J. Chun, "Core Python Programming", Second Edition, Pearson Education, 2010.          |               |
| 3. Machine Learning with Python - an approach to applied ML, by Abhishek Vijayvargia,           |               |
| BPB publications                                                                                |               |
| 4.Practical Machine Learning by Sunila Gollapudi Packt Publishing Ltd                           |               |
| 5. Machine Learning by Tom M. Mitchell, McGraw Hill Education; First edition                    |               |
|                                                                                                 |               |
| Keierence Books:                                                                                |               |
| 1. Aurelien Geron, "Hands on Machine Learning with Scikit -learning, Keras &                    |               |
| rensorriow ", Concepts, 1001s & rechniques to build Intelligent systems                         |               |
| 2. Andreas Muller, "Introduction to Machine Learning with Python: A Guide for Data              |               |
| Scientists", 1st Edition, O'Reilly Media, 2017.                                                 |               |
| 2 Deiler Channe Machine Learning - Klasser Desta Destalist' 2001                                |               |

| Assessment | Marks |
|------------|-------|
| ESE        | 50    |

| Title of the Course: Signal and Image Processing | L | Т | Р | Credit |
|--------------------------------------------------|---|---|---|--------|
| Course Code: UMEMM0542                           | 3 | - | - | 3      |

Course Pre-Requisite: Knowledge of basic Electronic Devices and Signal.

**Course Description:** Signal Image Processing deals with the processing of Digitized images. In image processing, there are two major categories of processing; the first is enhancing the quality of the image so that human beings will better visualize the image. The other applications associated with detecting and extracting information by machine may be to assist human decisions. In this course, we will introduce various image processing techniques, algorithms, and their applications for improvement in the visual quality of the image. Also, the curriculum includes an introduction to segmentation and object representation.

#### **Course Learning Outcomes:**

| CO  | After successful completion of the course the student should be able to                                             | Bloom's Cognitiv |               |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|------------------|---------------|--|--|--|
|     | After successful completion of the course the student should be able to                                             | level            | Descriptor    |  |  |  |
| CO1 | Explain basic concepts of signal conditioning components and Image Formation.                                       | II               | Understanding |  |  |  |
| CO2 | Make Use of the fundamentals of image enhancement and restoration techniques in both spatial and frequency domains. | III              | Applying      |  |  |  |
| CO3 | <b>Demonstrate</b> various image segmentation techniques and morphological operations used in image analysis.       | ΙΙ               | Understanding |  |  |  |
| CO4 | <b>Summarize</b> key image compression techniques and their role in reducing redundancy and improving efficiency.   | ΙΙ               | Understanding |  |  |  |

#### **CO-PO, PSO Mapping:**

| СО  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|------|
| CO1 | 1   | 1   | 1   | 1   |     |     |            |     |     |      |      |      | 1    | 1    | 1    |
| CO2 | 1   | 1   | 1   | 2   |     |     |            |     |     |      |      |      | 1    | 1    | 2    |
| CO3 | 1   | 1   | 1   | 1   |     |     |            |     |     |      |      |      | 1    | 1    | 2    |
| CO4 | 1   | 1   |     | 1   |     |     |            |     |     |      |      |      | 1    | 1    | 1    |

1: Low 2: Medium 3: High

Assessments:

| Components | Marks |
|------------|-------|
| ESE        | 100   |

#### ESE: Assessment is based on 100% course content

| Course Contents:                                                                                   | Hours |
|----------------------------------------------------------------------------------------------------|-------|
| Unit 1: - Signal Conditioning                                                                      | 07    |
| Signal conditioning process, Operational amplifier (inverting amplifier, non-inverting amplifier,  |       |
| summing, subtractor), Filtering, Data acquisition, Multiplexer, Analog to Digital Converter (ADC), |       |
| Digital to Analog Converter (DAC).                                                                 |       |
| Unit 2: - Digital Image Fundamentals & Image Transforms:                                           | 08    |
| Digital Image fundamentals, Sampling and quantization, Relationship between pixels.                |       |

| Image Transforms: 2-D FFT, Properties. Walsh transforms, Hadamard Transform, Discrete cosine                |    |
|-------------------------------------------------------------------------------------------------------------|----|
| Transform, Discrete Wavelet Transform.                                                                      |    |
| Unit 3: - Image Enhancement:                                                                                | 08 |
| Image enhancement (spatial domain): Introduction, Image Enhancement in Spatial Domain, Enhancement          |    |
| Through Point Operation, Types of Point Operation, Histogram Manipulation, gray level Transformation,       |    |
| local or neighborhood operation, median filter, spatial domain high- pass filtering.                        |    |
| Image enhancement (Frequency domain): Filtering in Frequency Domain, Obtaining Frequency Domain             |    |
| Filters from Spatial Filters, Generating Filters Directly in the Frequency Domain, Low Pass (smoothing) and |    |
| High Pass (sharpening) filters in Frequency Domain.                                                         |    |
| Unit 4: - Image Restoration:                                                                                | 07 |
| Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters,         |    |
| Constrained Least Squares Restoration.                                                                      |    |
| Unit 5: - Image Segmentation and Processing:                                                                | 08 |
| Detection of discontinuities. Edge linking and boundary detection, Thresholding, Region oriented            |    |
| segmentation.                                                                                               |    |
| Morphological Image Processing: Dilation and Erosion, Dilation, Structuring Element                         |    |
| Decomposition, Erosion, Combining Dilation and Erosion, Opening and Closing, the Hit or Miss                |    |
| Transformation.                                                                                             |    |
| Unit 6: - Image Compression:                                                                                | 07 |
| Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Huffman and            |    |
| Arithmetic Coding, Error Free Compression, Lossy Compression, Lossy and Lossless Predictive Coding,         |    |
| Transform Based Compression, JPEG 2000 Standards.                                                           |    |
| Text books:                                                                                                 |    |
| 1. Digital Image Processing- Rafeal C. Gonzalez, Richard E. Woods, 3rd Edition, Pearson,                    |    |
| 2008.                                                                                                       |    |
| 2. Digital Image Processing- S Jayaraman, S. Essakkirajan, T. Veerakumar-TMH, 2010.                         |    |
| 3. Pratt, William K., "Digital Image Processing", John Wiley & Sons, New                                    |    |
| References:                                                                                                 |    |
| 1. Digital Image Processing and analysis-human and computer vision application with using                   |    |
| CVIP Tools – Scotte Umbaugh,2ndEd, CRC Press,2011.                                                          |    |
| 2. Introduction to Digital Image Processing with Matlab, Alasdair McAndrew, Thomson Course                  |    |
| Technology.                                                                                                 |    |
| 3. Fundamentals of Digital Image Processing-A.K. Jain, PHI, 1989.                                           |    |
| 4. Introduction to Image Processing & Analysis-JohnC.Russ, J.ChristianRuss, CRCPress. 2010.                 |    |
| 5. Digital Image Processing with MATLAB & Labview - Vipula Singh Elsevier                                   |    |

| Title of the Course: Electric & hybrid vehicle. | L | Т | Р | Credit |
|-------------------------------------------------|---|---|---|--------|
| Course Code:UMEMM0543                           | 3 | 1 | - | 3      |

**Course Pre-Requisite:** Basic knowledge about electric motor, Applied Thermodynamic, Basic Mechanical Engineering.

#### **Course Description:**

This course discusses the fundamental concepts and analysis of hybrid and electric vehicles. This course discusses the various EV subsystems such as electric motors, energy storage devices, charging technology etc. Analytical exercises in vehicle dynamics, battery parameters and charging technology are included as a preparatory base for designing an EV.

#### **Course Objectives:**

To impart the knowledge about electric vehicles and hybrid vehicles. To expose the Electrical Engineering students to various interdisciplinary areas related to electric and hybrid vehicles.

#### **Course Learning Outcomes:**

| CO         | After the completion of the course the student should  | Bloom's Cognitive |               |  |  |
|------------|--------------------------------------------------------|-------------------|---------------|--|--|
|            | be                                                     | level             | Descriptor    |  |  |
|            | able to                                                |                   | _             |  |  |
| <b>CO1</b> | Understand the concept of EV & HEV.                    | II                | Understanding |  |  |
| CO2        | Explain the correlation between HEV, EV and            | II                | Understanding |  |  |
|            | environment, infrastructure and policies of a nation.  |                   |               |  |  |
| CO3        | Illustrate various subsystems and components in EV and | IV                | Applying      |  |  |
|            | HEV.                                                   |                   |               |  |  |
| <b>CO4</b> | Solve the performance parameters of EV subsystems.     | IV                | Applying      |  |  |
|            |                                                        |                   |               |  |  |
|            |                                                        |                   |               |  |  |

# **CO-PO-PSO Mapping:**

| СО         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1        | 2   | 1   | 1   |     | 1   |     |     |     |     | 1    |      |      |      |      |
| CO2        | 2   | 1   | 1   |     | 1   | 2   | 1   |     |     |      |      | 1    |      |      |
| CO3        | 2   | 1   | 1   |     |     | 2   | 1   |     |     |      |      | 2    | 1    | 2    |
| <b>CO4</b> | 3   | 1   | 2   |     | 1   | 2   | 1   |     |     |      | 2    | 2    | 1    | 2    |

#### Assessments :

**Teacher Assessment:** 

| Assessment Ivia | rks |
|-----------------|-----|
| ESE 100         |     |

| Course Contents:                                                                                   |                  |
|----------------------------------------------------------------------------------------------------|------------------|
| Unit 1: Introduction to Electric Vehicle                                                           | 07 Hrs.          |
| History of electric vehicles, Development towards 21st century, Environment                        |                  |
| impact, Types of electric vehicles in use today – Battery Electric Vehicle, Hybrid,                |                  |
| Fuel Cell EV, Solar powered Vehicle, Conventional drive train.                                     |                  |
| Unit 2: Vehicle Dynamics                                                                           | 09 Hrs.          |
| Calculation/modeling of traction power and energy consumption. Resistance to                       |                  |
| vehicle motion, Air, Rolling and Gradient resistance, Acceleration, Gradeability                   |                  |
| and draw bar pull, Traction and Tractive effort, Distribution of weight, Power                     |                  |
| required for vehicle propulsion, Selection of gear ratio, Rear axle ratio.                         |                  |
| (Numerical)                                                                                        |                  |
| Unit 3: Electrical Vehicles – Technology and design                                                | 07 Hrs.          |
| Configuration of EV's electric motor characteristics design process and issues                     | 07 1115          |
| modelling and performance estimation electric motors used for EVs and HEVs                         |                  |
| energy consumption. Regenerative brakes                                                            |                  |
| chergy consumption, Regenerative brakes.                                                           |                  |
| Unit 4. Hybrid electric yebiele technology                                                         | <b>NQ U</b>      |
| Concert Modes and experience attemps. Architectures of hydrid drive trains arrive                  | <b>UO IIIS.</b>  |
| Concept, Modes and operation patterns, Architectures of hybrid drive trains, series                |                  |
| nybrid drive train, parallel nybrid drive train with torque coupling and speed                     |                  |
| coupling, Sizing of components, Introduction to electric components used in                        |                  |
| hybrid and electric vehicle.                                                                       |                  |
|                                                                                                    | 0 <b>- - - -</b> |
| Unit 5: Energy sources and storage system                                                          | 07 Hrs.          |
| Introduction to energy storage requirements in Hybrid and electric vehicles,                       |                  |
| Battery based energy storage, Fuel Cell based energy storage, super capacitor                      |                  |
| based energy storage, flywheel based energy storage. Battery Management System                     |                  |
| (BSM)                                                                                              |                  |
|                                                                                                    |                  |
| Unit 6: Energy Management Strategies                                                               | 07 Hrs.          |
| Introduction to energy management strategies used in hybrid and electric vehicles,                 |                  |
| classification of different energy management strategies, comparison of different                  |                  |
| energy management strategies, implementation issues of energy management                           |                  |
| strategies.                                                                                        |                  |
| Introduction to various charging techniques and schematics of charging stations.                   |                  |
|                                                                                                    |                  |
| Text books:                                                                                        |                  |
| 1."Electric and Hybrid Vehicles" by Tom Denton, Routledge, 2016.                                   |                  |
| 2. Modern Electric Vehicle Technology, by C.C.Chau and K.T. Chau, OXJORD Un                        | V.               |
| 3. Advanced Electric Drive Vehicles by Ali Emadi. CRC press. 2014.                                 |                  |
| 4 P S Gill Automobile Engineering II S K Kataria and Sons Second Edition 2012                      |                  |
| 5 R K Rainut Automobile Engineering Laymi Publications First Edition 2007                          |                  |
| 6 Automobile Engineering" G B S Narang Khanna Publication 3rdEdition                               |                  |
|                                                                                                    |                  |
| Reference Books:                                                                                   |                  |
| 1. "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory                 | . and            |
| Design" by M Ehsani Y Gao S E Gay and A Emadi CRC Press 2004                                       | ,                |
| 2 "Hybrid Electric Vehicles: Energy Management Stratagies" by S. Onori I. Sorrag                   | and G            |
| Rizzoni Springer 2015                                                                              |                  |
| 2 Fronda 0 August of Line Det in Plantais Daires Valiation Unabout Locide Coldina 7                | 1                |
| + $+$ HIM (0.37 / MM) OT 1.1 100 ROT 10 HIMOTPLO I 19370 VANIALAO HIMANINA MANAGO $+$ $         -$ | hong             |
| 3. Funda& Appl of L1- ion Bat in Electric Drive venicles, JuchungJuaing, CalpingZ                  | hang,            |

| Title of the Course: Energy Conversion and Management | L | Т | Р | Credit |
|-------------------------------------------------------|---|---|---|--------|
| Course Code: UMEM0561                                 | 3 |   |   | 3      |
|                                                       |   |   |   |        |

#### **Course Pre-Requisite:**

**Course Description:** This course examines how energy is transformed and used, covering both traditional and renewable sources. Students will learn to analyze energy systems, apply management techniques to improve efficiency, and evaluate sustainable energy solutions for a cleaner future.

#### **Course Objectives:**

- 1. To enable students to analyze diverse energy resources and environmental impact of various energy conversion technologies.
- 2. To equip students with the ability to apply energy management principles and design sustainable energy systems for practical applications.
- 3. To foster an understanding of the relationship between energy, environment, and sustainable development, and integrate renewable energy solutions.
- 4. To develop students' skills in assessing energy consumption, identifying areas for improvement, and recommending effective energy conservation and management strategies.

#### **Course Learning Outcomes:**

| CO  | After the completion of the course the student should be             | Bloom | 's Cognitive  |
|-----|----------------------------------------------------------------------|-------|---------------|
|     | able to                                                              | level | Descriptor    |
| CO1 | Explain need of different energy sources and their importance        | II    | Understanding |
| CO2 | Understand different energy resources and its implementation.        | II    | Understanding |
| CO3 | Identify and implement different energy conservation and management  | III   | Applying      |
|     | techniques.                                                          |       |               |
| CO4 | To analyze energy system impacts and recommend sustainable solutions | IV    | Analyzing     |
|     | that adhere to global environmental standards.                       |       |               |

#### **CO-PO Mapping**

| CO - PO Mapping  |      |   |   |   |   |   |   |   |   |    |    |       |   |   |  |
|------------------|------|---|---|---|---|---|---|---|---|----|----|-------|---|---|--|
| Course Outcourse | PO's |   |   |   |   |   |   |   |   |    |    | PSO's |   |   |  |
| Course Outcomes  | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1     | 2 | 3 |  |
| CO1              | 3    | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1  | 0  | 0     | 0 | 0 |  |
| CO2              | 2    | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0  | 2  | 0     | 0 | 0 |  |
| CO3              | 0    | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0  | 1  | 1     | 2 | 2 |  |
| CO4              | 0    | 0 | 2 | 2 | 0 | 2 | 2 | 1 | 0 | 0  | 0  | 0     | 0 | 2 |  |

#### Assessments:

**Teacher Assessment:** 

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

| Assessment | Marks |
|------------|-------|
| ISE 1      | 10    |
| MSE        | 30    |
| ISE 2      | 10    |
| ESE        | 50    |

| Course Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <b>Unit 1:</b><br><b>Energy Scenario and fundamentals:</b> Global and national energy scenario: Current energy demand and supply, Indian energy scenario, Sectorial energy consumption (domestic, industrial and other sectors), Energy resources, energy conservation and its importance, energy strategy for the future.                                                                                                                                                                | 7Hrs   |
| Unit 2:<br>Organizing for energy conservation programme, The energy audit and energy<br>information system, technology for energy conservation, co-generation of process, steam &<br>electricity, computer integrated energy management, commercial options in waste heat<br>recovery equipment, cases of energy studies, energy conservation opportunity.                                                                                                                                | 8 Hrs  |
| <b>Economics of Power Plant</b> - Load Curves and Load duration curves (Numerical treatments), Performance and operational characteristics of power plants, Peak load, Intermediate                                                                                                                                                                                                                                                                                                       |        |
| Unit 3: Renewable Energy Resources and Conversion<br>Solar energy: Photovoltaic and thermal conversion, Wind energy: Horizontal and vertical<br>axis wind turbines, Biomass energy: Combustion, gasification, and anaerobic digestion,<br>Geothermal energy: Geothermal power plants and heat pumps, Ocean energy: Tidal, wave,<br>and ocean thermal energy conversion, Small hydro power plants.                                                                                         | 7Hrs   |
| <b>Unit 4: Energy Management and Efficiency</b><br>Energy auditing and analysis, Energy conservation techniques in industries and buildings.,<br>Demand-side management, Cogeneration and trigeneration, Topping cycle and bottoming<br>cycle.                                                                                                                                                                                                                                            | 8 Hrs. |
| <b>Unit 5: Waste Utilization and Energy Storage</b><br>Waste-to-energy technologies: Incineration, pyrolysis, and gasification, Landfill gas<br>utilization, Energy storage systems: Batteries, pumped hydro, compressed air, and thermal<br>storage, Hydrogen energy storage, Flywheel energy storage, Super capacitors.                                                                                                                                                                 | 7Hrs.  |
| Unit 6: Sustainable Energy and Environmental Considerations                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 Hrs. |
| Sustainable energy development and policies, Environmental impact of energy generation<br>and utilization.<br><b>Pollution control technologies:</b> Emission standards and regulations., Climate change and<br>its impact on the energy sector, Carbon capture and storage, Sustainable Development<br>Goals (SDGs) related to energy, Recent developments in sustainable energy technologies.                                                                                           |        |
| <ul> <li>Text books:</li> <li>1. Fundamentals of Renewable Energy Resources, G. N.Tiwari and M. K. Ghosal, Narosa Publishing House.</li> <li>2. Non-Conventional Energy Recourses, G D Roy, Khanna Publication, 2020.</li> <li>3. Energy Management Handbook by Wayne C. Turner.</li> <li>4. Solar Energy, Sukhatme, 3<sup>rd</sup> Edition, Tata McGraw-Hill Education, 2008</li> <li>5. A Text Book of Power Plant Engineering, R. K. Rajput, Laxmi Publications, New Delhi.</li> </ul> |        |

#### **Reference Books:**

- 1) Renewable Energy Resources, John Twidell & Anthony D. Weir, 2<sup>nd</sup> Edition, Taylor & Francis, 2006.
- 2) Handbook of Energy Engineering by Albert Thumann and D. Paul Mehta.
- 3) Thermal Energy, Mahesh Rathore, Tata McGraw-Hill Education, 2010
- 4) Power Plant Engineering, P.K.Nag, 2nd Edition, Tata McGraw-Hill Education, 2002
  5) An Introduction to Power Plant Technology, G.D. Rai, 3<sup>rd</sup> Edition, Khanna publications.

# Kolhapur Institute of Technology's College of Engineering, Kolhapur



# **Curriculum (Structure)**

for

B.TECH Robotics (Hons.) Programme (Under Graduate Programme) From Academic Year 2021-2022

# Kolhapur Institute of Technology's College of Engineering,(Autonomous) Kolhapur.

# **Department of Mechanical Engineering**

Teaching and Credit scheme for

# Propose B.Tech. Robotics (Hons.) Programme in Mechanical Engineering

| Course No. | Course Name                               | Semester | No. of Hours /Week |   |   |         |  |  |
|------------|-------------------------------------------|----------|--------------------|---|---|---------|--|--|
|            |                                           |          | L                  | Т | Р | Credits |  |  |
| UMEHN0351  | FUNDAMENTALS OF ROBOTICS                  | III      | 3                  | 1 |   | 4       |  |  |
| UMEHN0451  | FUNDAMENTALS OF<br>MICROCONTROLLERS       | IV       | 3                  | 1 |   | 4       |  |  |
| UMEHN0551  | PROGRAMMING & SIMULATIONS<br>FOR ROBOTICS | V        | 3                  | 1 |   | 4       |  |  |
| UMEHN0651  | ROBOT KINEMATICS AND<br>DYNAMICS          | VI       | 3                  | 1 |   | 4       |  |  |
| UMEHN0751  | MINI PROJECT                              | VII      | -                  | - | 4 | 2       |  |  |
|            |                                           |          | 12                 | 4 | 4 | 18      |  |  |

Total Credits - 18, Total Contact hours - 20

UMEHN0351 As per NEP Structure AY2425 onwards

| Title of                                                                                          | f the                                                                                                | Сот         | urse                 | Pro            | grar          | nmin             | g an            | d Sim        | ulati        | ons    | for            | L          | Т              | Р           | Cre                      | dit   |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------|---------------|------------------|-----------------|--------------|--------------|--------|----------------|------------|----------------|-------------|--------------------------|-------|
| Robot                                                                                             | ics                                                                                                  |             |                      |                | 0             |                  | 0               |              |              |        |                | 3          | 1              | -           | 4                        |       |
| Course                                                                                            | Course Code: UMEHN0551                                                                               |             |                      |                |               |                  |                 |              |              |        |                |            |                |             |                          |       |
| Course                                                                                            | Course Pre-Requisite: Basics of programming, Basic electronics & electrical, Basic Sciences, sensors |             |                      |                |               |                  |                 |              |              | sors   |                |            |                |             |                          |       |
| Course Description: This course gives knowledge about the Robotics programming. It also describes |                                                                                                      |             |                      |                |               |                  |                 |              |              |        |                |            |                |             |                          |       |
| the emer                                                                                          | rging                                                                                                | tren        | nds 111              | robot          | ics pi        | rogram           | ming            | ın diffe     | erent la     | nguag  | ges            |            |                |             |                          |       |
|                                                                                                   | Obj<br>To v                                                                                          | jecti       | ives                 | nd h           |               |                  | مامح            | iogon        | daan         | aanta  |                | diated u   | uith Do        | hotic       |                          | 1:40  |
| 1.                                                                                                | 10 u                                                                                                 | mut         | mina                 | nu Da          | asic          | lermin           | loiog           | les an       | u com        | cepts  | asso           | clated v   | VILII KO       | DOLIC       | 's and                   | 1 115 |
| 2                                                                                                 | Tos                                                                                                  | tud         | v vai                | 5.<br>rious    | neri          | nheral           | devi            | ices an      | d inte       | rfaci  | no th          | em with    | robote         | 2           |                          |       |
| 3.                                                                                                | Tos                                                                                                  | tud         | v mc                 | tor c          | ontr          | ol usin          | g PW            | VM and       | d com        | muni   | icatio         | n betwe    | en two         | ,<br>o robe | ots.                     |       |
| 4.                                                                                                | Tos                                                                                                  | tud         | v the                | e vari         | ous           | liffere          | nt pl           | atform       | is for       | robot  | tprog          | grammir    | 1g.            | 100         |                          |       |
|                                                                                                   |                                                                                                      |             |                      |                |               |                  | - 1-            |              |              |        | - <b>r</b> - C | <b>J</b> - | 0              |             |                          |       |
| Course                                                                                            | Lea                                                                                                  | rni         | ng O                 | utco           | mes:          |                  |                 |              |              |        |                |            |                |             |                          |       |
| CO                                                                                                | Aft                                                                                                  | er t        | he c                 | omple          | etion         | of the           | cou             | rse the      | e stud       | ent    | -              | Bloom's    | : Cogni        | tive        |                          |       |
|                                                                                                   | sho                                                                                                  | uld         | be a                 | ble to         | D             |                  |                 |              |              |        |                | level      |                | Des         | scripto                  | or    |
| CO1                                                                                               | То                                                                                                   | App         | oly k                | nowl           | edge          | e of aut         | oma             | tion to      | ols ar       | id oth | ner            | -          |                | С           | ogniti                   | ve    |
|                                                                                                   | equ                                                                                                  | lipn        | nent                 | ′s t           | ру            | taking           | in              | ito a        | iccoui       | nt t   | the            | 1          |                | (Kr         | nowled                   | lge)  |
| CO2                                                                                               | fun                                                                                                  | dan         | nent                 | al pri         | ncip          | les rot          | bot p           | rograr       | nming        | 5      |                |            |                | 0           | •,•                      |       |
| 02                                                                                                | 10                                                                                                   | 10          | enti                 | TY V           | ario          | us ta            | ISK             | relate       | d to         | rot    | oot            | Ι          |                | (Kr         | Cognitive<br>(Vnowledge) |       |
| <u>CO3</u>                                                                                        |                                                                                                      |             |                      | ng<br>Ngang    | wlod          | a var            | iouc            | nout         |              | ago f  | or             |            |                |             | (Kilowieuge)             |       |
|                                                                                                   | roh                                                                                                  | Acy         | rog                  | z KIIO<br>ramn | vieu<br>ning  | ige vai          | ious            | new t        | 001 us       | agei   | 01             | Ι          |                | (Kr         | ogniu<br>nowlea          | loe)  |
| CO4                                                                                               | To                                                                                                   | An:         | alvzi                | <b>no</b> th   | inig<br>ie nr | ohlem            | logi            | cally a      | nd           |        |                |            |                | (181        |                          | 150)  |
|                                                                                                   | Dei                                                                                                  | mon         | istra                | te &           | an            | nlv k            | now             | rledge       | for          | roł    | not            | П          |                | Psy         | Psychomotor              |       |
|                                                                                                   | pro                                                                                                  | ogra        | mmi                  | ing.           | ap            | piy i            | 110 **          | leuge        | 101          | 100    |                | 11         |                |             | (Skill)                  |       |
| CO-PC                                                                                             | ) Ma                                                                                                 | ippi        | ng:                  | 0.             |               |                  |                 |              |              |        |                |            |                |             |                          |       |
| CO                                                                                                | 1                                                                                                    | 2           | 3                    | 4              | 5             | 6                | 7               | 8            | 9            | 10     | 11             | PSO1       | PSO2           | PS          | 03                       |       |
| CO1                                                                                               | 2                                                                                                    |             |                      |                |               |                  |                 | 2            |              |        |                | 3          |                | 2           | 2                        |       |
| CO2                                                                                               | 3                                                                                                    |             |                      | 3              |               |                  |                 | 2            |              |        |                | 3          | 2              | 2           |                          |       |
| CO3                                                                                               |                                                                                                      |             |                      |                | 3             |                  |                 | 2            |              |        |                | 3          | 2              | 2           |                          |       |
| <b>CO4</b>                                                                                        |                                                                                                      | 3           |                      |                | 3             |                  |                 | 2            |              |        | 3              | 3          |                | 2           | 2                        |       |
| Assess                                                                                            | nent                                                                                                 | s:          |                      |                |               |                  |                 |              |              |        |                |            |                |             |                          |       |
| Teache                                                                                            | r As                                                                                                 | sess        | smen                 | t:             |               |                  |                 |              |              |        |                |            |                |             |                          |       |
| Assess                                                                                            | smen                                                                                                 | t           |                      |                |               |                  |                 |              | Mark         | 5      |                |            |                |             |                          |       |
| ESE                                                                                               |                                                                                                      |             |                      |                |               |                  |                 |              | 100          |        |                |            |                |             |                          |       |
| No ISE                                                                                            | 1 a                                                                                                  | nd I        | SE I                 | I an           | d MS          | SE:              |                 |              |              |        |                |            |                |             |                          |       |
| ESE: F                                                                                            | ianl l                                                                                               | ESE         | Ass                  | essme          | ent is        | based            | on 1            | 00% c        | ourse        | conte  | ent foi        | r 100 ma   | rks.           |             |                          |       |
|                                                                                                   |                                                                                                      |             |                      |                |               |                  |                 |              |              |        |                |            |                |             |                          |       |
| Course                                                                                            | e Cor                                                                                                | iten        | ts:                  |                | -             |                  |                 |              |              |        |                |            |                |             |                          |       |
| Unit 1:                                                                                           | - Int                                                                                                | rod         | lucti                | ion to         | o Ro          | bot Pr           | ogra            | mmin         | lg           |        |                |            |                | . (         | 07)H                     | lrs.  |
| Robot                                                                                             | pro                                                                                                  | ogra        | mmi                  | ing-Ir         | itroc         | luctior          | ı-Typ           | bes-l        | Flex         | Pend   | ant-           | Lead       | throug         | gh          |                          |       |
| progra                                                                                            | ınmı                                                                                                 | ing,        | ل00<br>نام           | orain          | ate           | syster           | 11S (           | JI KO        | UUT,         | KODO   | t CO           | ntroller   | - majo         |             |                          |       |
| Compo                                                                                             | nent                                                                                                 | S, II       | do                   | lons-          | wris<br>bot   | t Mecr           | ianis           | m-into       | Poho         | ation- | -Inter         | TOCK CO    | mmano<br>Motio | 1S          |                          |       |
| comme                                                                                             | illg<br>inde                                                                                         | 1110<br>6n/ | ue (<br>d_≙ff        | ol 10<br>ector | s and         | Juggi<br>Sanas f | iig-I<br>ire ci | ypes,        | RUDO<br>nde  | t sp   | ecilic         | auons-     | MOUO           | 11          |                          |       |
| Unit 2.                                                                                           |                                                                                                      | , en(       | <b>Pro</b>           | oram           | s all(<br>min | a Jane           | 113 CC          |              | iius.        |        |                |            |                |             | 07)µ                     | [re   |
| Robot                                                                                             | Lan                                                                                                  | giia        | 11 <b>υ</b><br>σρς-Ι | Classi         | ificat        | 5 Lang<br>ions   | Stru            | us<br>ctures | - VAI        | , lan  | ອງເລσ          | e comn     | nands          |             | U/JI                     | 11.3. |
| motion                                                                                            | COn                                                                                                  | oua         | oco<br>L ha          | nd co          | ntro          | l. prod          | Jram            | contr        | ol. ni       | ck an  | d nla          | ce annli   | ication        | s.          |                          |       |
| motion                                                                                            |                                                                                                      |             | ., na                |                |               | -, 1,05          | 5 u III         | Conti        | <u>-, hu</u> | un un  | ~ più          | ee appi    |                | -)          |                          |       |

| palletizing applications using VAL, Robot welding application using VAL program-WAIT, SIGNAL and DELAY command for communications using simple applications. VAL-II programming-basic commands, applications-Simple problem using conditional statements-Simple pick and place applications-Production rate calculations using robot. |           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Unit 3:-Introduction to Firebird V and ROS                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |
| Introduction to Firebird V, Avatars of Fire Bird V Robot, Block diagram, Pin                                                                                                                                                                                                                                                          |           |  |  |  |  |  |
| Connections. Introduction to an architectural overview of the                                                                                                                                                                                                                                                                         |           |  |  |  |  |  |
| Robot                                                                                                                                                                                                                                                                                                                                 |           |  |  |  |  |  |
| Operating System Framework and setup with ROS environment using                                                                                                                                                                                                                                                                       |           |  |  |  |  |  |
| suitable Workspace                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |
| Unit 4: -Motion Control & Robot communication                                                                                                                                                                                                                                                                                         | (08) Hrs. |  |  |  |  |  |
| Basic movements of Robots, Understanding L293DIC, Motion interfacing                                                                                                                                                                                                                                                                  |           |  |  |  |  |  |
| with Firebird-V. Pin Connections, Logic tables, writing c code.                                                                                                                                                                                                                                                                       |           |  |  |  |  |  |
| Serial Communication using UART, Registers involved in the serial                                                                                                                                                                                                                                                                     |           |  |  |  |  |  |
| communication. Interrupts. Sources of Interrupts. Position encoder.                                                                                                                                                                                                                                                                   |           |  |  |  |  |  |
| Unit 5: -Velocity control using PWM&LCD Interfacing                                                                                                                                                                                                                                                                                   | (08) Hrs. |  |  |  |  |  |
| Introduction, PWM, Duty cycle, PWM generation in AVR, Timers in AVR,                                                                                                                                                                                                                                                                  | (         |  |  |  |  |  |
| Timers in Firebird V. Servo motor control using PWM.LCD definition, Pin                                                                                                                                                                                                                                                               |           |  |  |  |  |  |
| configuration, control pins, Data pin, LCD Interfacing, LCD Commands.                                                                                                                                                                                                                                                                 |           |  |  |  |  |  |
| Unit6: -Artificial Intelligence: -                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |
| Foundations of AL AI techniques. Need and application of AL Turing test.                                                                                                                                                                                                                                                              |           |  |  |  |  |  |
| acting and thinking humanly, acting and thinking rationally. History of AI.                                                                                                                                                                                                                                                           |           |  |  |  |  |  |
| Intelligent Agents of AI.                                                                                                                                                                                                                                                                                                             |           |  |  |  |  |  |
| Text Books:                                                                                                                                                                                                                                                                                                                           |           |  |  |  |  |  |
| 1. John J. Craig, Introduction to Robotics (Mechanics and Control), Addison-                                                                                                                                                                                                                                                          | -         |  |  |  |  |  |
| Wesley, 2nd Edition, 2004                                                                                                                                                                                                                                                                                                             | · · · ·   |  |  |  |  |  |
| 2. MIKEII P. Groover et. Al., Industrial Robotics: Technology, Progra                                                                                                                                                                                                                                                                 | imming    |  |  |  |  |  |
| and Applications, McGraw – Hill International, 1986.                                                                                                                                                                                                                                                                                  |           |  |  |  |  |  |
| 3. Automation, Production Systems and Computer Integrated Manufac                                                                                                                                                                                                                                                                     | cturing,  |  |  |  |  |  |
| M.P. Groover, Pearson Education.                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |  |
| 4. Industrial Automation: w.P. David, joint whey and sons.                                                                                                                                                                                                                                                                            | ahat      |  |  |  |  |  |
| 5. Programming Robots with ROS: A Practical Introduction to the Ro                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |
| (Author) William D                                                                                                                                                                                                                                                                                                                    | erkey     |  |  |  |  |  |
| (Author), William D.                                                                                                                                                                                                                                                                                                                  |           |  |  |  |  |  |
| 6. Smart, O Relly Media; 1st edition (16 November 2015)                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |
| A Cuide to Controlling Autonomous Debots by Com                                                                                                                                                                                                                                                                                       |           |  |  |  |  |  |
| 1. KODOL Programming A Guide to Controlling Autonomous Robots by Cam                                                                                                                                                                                                                                                                  | eron      |  |  |  |  |  |
| Dugites, Hacey Hugites, Que Publishing.                                                                                                                                                                                                                                                                                               | mmina     |  |  |  |  |  |
| 2. Robot Operating System (ROS) for Absolute Beginners: Robotics Progra                                                                                                                                                                                                                                                               | mming     |  |  |  |  |  |
| Made Easy by Lentin Joseph ISBN 1484234049, 978-1484234044                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |

| Title of the Course: Power Plant Engineering | L | Т  | Р   | Credit |
|----------------------------------------------|---|----|-----|--------|
| Course Code:UMEPC0601                        | 3 | -  | -   | 3      |
|                                              | • | тт | 1.1 |        |

**Course Pre-Requisite:** Basic Mechanical Engineering, Applied Thermodynamic, Heat Mass Transfer.

#### **Course Description:**

The aim of this course is to provide students with a working knowledge and application of the fundamentals of how the operation of power plant affect their working, performance, fuel requirements and environmental impact.

The focus is on explaining engine performance in terms of power, energy utilization and exhaust emissions, its relation to internal processes like combustion and gas exchange at varying engineoperating condition.

#### **Course Objectives:**

1. To enable the students to analyze the Ideal and actual air standard cycles and valve timing diagrams.

2. To make the students to study of fuel supply system in I.C. Engine.

- 3. To educate the student about combustion phenomenon and emission characteristics of engines.
- 4. To impart knowledge about various engine performance characteristics of engine.

#### **Course Learning Outcomes:**

| CO         | After the completion of the course the student should be | Bloom's Cognitive |               |  |
|------------|----------------------------------------------------------|-------------------|---------------|--|
|            | able to                                                  | level             | Descriptor    |  |
| CO1        | Explain fundamentals of I. C. Engine                     | II                | Understanding |  |
| CO2        | Classify different power plants.                         | II                | Understanding |  |
| <b>CO3</b> | Identify different control systems in Power Plants       | III               | Applying      |  |
| <b>CO4</b> | Analyze performance parameters of Power Plants.          | IV                | Analyzing     |  |

#### **CO-PO-PSO Mapping:**

| CO         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1        | 2   |     |     |     |     |     |     |     |     |      |      | 2    |      |      |
| CO2        | 2   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| <b>CO3</b> | 2   | 2   |     |     |     | 2   | 2   |     |     |      |      |      |      |      |
| <b>CO4</b> | 3   | 2   |     |     |     |     |     |     |     |      | 2    | 2    |      |      |

#### Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment                                    | Marks                                        |
|-----------------------------------------------|----------------------------------------------|
| ISE 1                                         | 10                                           |
| MSE                                           | 30                                           |
| ISE 2                                         | 10                                           |
| ESE                                           | 50                                           |
| ISE 1 and ISE 2 are based on assignment/decla | red test/quiz/seminar/Group Discussions etc. |

MSE: Assessment is based on 50% of course content (Normally first three modules)

| ESE: Assessment is based on 100% course content with60-70% weightage for cours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e content |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (normally last three modules) covered after MSE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Course Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Unit 1: Introduction<br>Introduction, Classification of Power plants, applications, Engine specifications.<br>Engine Cycles: Engine cycles, Deviation of actual cycles from air standard cycles,<br>Valve timing diagram for high and low speed engine, Port timing diagram.<br>Supercharging and Turbo-charging, Alternative fuel for I. C. engines (Hydrogen<br>etc.)                                                                                                                                                                                                                                                                                               | 07 Hrs.   |
| <ul> <li>Unit 2: Fuel Supply system for SI and CI Engine</li> <li>Fuel Systems for S.I. Engines:</li> <li>Engine fuel requirements, complete carburetor, Derivation for calculation of A/F ratio, Calculation of main dimensions of carburetors, Effect of altitude on Air fuel ratio. Electronic Petrol injection system (MPFI).</li> <li>Fuel Systems for C.I. Engines:</li> <li>Requirements of injection system, Types of injection systems – Individual pump, Common rail and Distributor systems, Unit injector, Types of fuel nozzles- single hole, multi hole, pintle, and pintaux. Governing of C.I. engines. Electronic diesel injection system.</li> </ul> | 09 Hrs.   |
| Performance parameters, Measurement of performance parameters like torque, power, Volumetric Efficiency, Mechanical Efficiency, BSFC, Brake and Indicated Thermal efficiencies. Numerical on Heat Balance Sheet and engine performance, Performance curves.                                                                                                                                                                                                                                                                                                                                                                                                           | 07 Hrs.   |
| <ul> <li>Unit 4: Combustion &amp; Emission control</li> <li>Stages of combustion in S.I. and C.I. engine, Knocking in S.I. and C.I. engine, types of combustion chamber in S.I. and C.I. engine.</li> <li>S.I. engine emission (HC, CO, NOx) Control methods- Evaporative (ELCD), Thermal, Catalytic converters, C.I. Engines Emission (CO, NOx, Smog, Particulate), Control methods- Chemical, EGR, Standard pollution Norms like EURO, Bharat stage.</li> <li>Different pollutants due to power plants and their effects on ecology, Pollution measuring and control devices, O2, CO2, CO, smoke and dust measurement.</li> </ul>                                   | 09 Hrs.   |
| <b>Unit 5: Resources and development of power in India-</b><br>NTPC, NHPC and their role in Power development in India, Present Power position in India. Different types of power plants – Thermal, Hydro, Gas Turbine, Nuclear and their characteristics, Comparison of Power plants with respect to various parameters, Combined Cycle, Pumped storage, Compressed Air storage power plants and their characteristics. Renewable energy sources like solar, wind, Biomass.                                                                                                                                                                                          | 07 Hrs.   |
| Unit 6: Economics of Power Plant-<br>Load Curves and Load duration curves (Numerical treatments), Performance and<br>operational characteristics of power plants, Peak load, Intermediate load and Base<br>load plants and their characteristics, Input output characteristics of power plants,<br>Economic division of between Base load plant and peak load plants, Tariff<br>methods, Cost of electric Energy, Fixed and operating cost                                                                                                                                                                                                                            | 06 Hrs.   |

# Text books: 1. A Course in Power Plant Engineering, S.C. Arora and S. Domkundwar, Dhanpat Rai, 1988 2. A Text Book of Power Plant Engineering, R. K. Rajput, Laxmi Publications, New Delhi. 3. Internal Combustion Engines", V. Ganesan, Tata McGraw Hill Publication. 4. "Internal Combustion Engines" Mathur and Sharma, Dhanpat Rai Publication, Delhi. 5. "Internal Combustion Engines", R. K. Rajput, SciTech Publication. 6. Solar Energy, Sukhatme, 3rd Edition, Tata McGraw-Hill Education, 2008 7. Fundamentals of Renewable Energy Resources, G. N. Tiwari and M. K. Ghosal, Narosa Publishing House, 2007 **Reference Book:** 1. "Internal Combustion Engines", J. B. Heywood, Tata McGraw Hill Publication . 2. "Internal Combustion Engines", Maleev, CBS Publication and Distributors. 3."Internal Combustion Engines", Gills and Smith, Oxford and IBH Publishing Company 4. "Internal Combustion Engines Fundamentals", E. F. Obert, Harper and Row Publication, New York. 5. Renewable Energy Resources, John Twidell & Anthony D. Weir, 2nd Edition, Taylor & Francis, 2006

6. Power Plant Engineering, P.K.Nag, 2nd Edition, Tata McGraw-Hill Education, 2002

| Title of                                                                                      | f the                                                                                           | e Cours   | se : Fini | te Ele  | ment A   | Analys  | sis     |                 | L       | , T       |        | Р             |          | Cr       | dit      |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|-----------|---------|----------|---------|---------|-----------------|---------|-----------|--------|---------------|----------|----------|----------|
| Course                                                                                        | e Co                                                                                            | de: UN    | ЛЕРСО     | 602     |          | -       |         |                 | 3       | -         |        | -             |          |          | 3        |
| Course                                                                                        | e Pn                                                                                            | e-Requ    | is ite :  |         |          |         |         |                 |         |           |        |               |          |          |          |
| • Applied Mechanics                                                                           |                                                                                                 |           |           |         |          |         |         |                 |         |           |        |               |          |          |          |
| •                                                                                             | Stre                                                                                            | ength of  | t Mater   | ia Is   |          |         |         |                 |         |           |        |               |          |          |          |
| Course                                                                                        | Course Description:                                                                             |           |           |         |          |         |         |                 |         |           |        |               |          |          |          |
| I his s                                                                                       | This subject enables the student to understand the important concepts of FEA, its evolution and |           |           |         |          |         |         |                 |         |           |        |               |          |          |          |
| applications. Students will learn the mathematical formulation of FEA problems. The Knowledge |                                                                                                 |           |           |         |          |         |         |                 |         |           |        |               |          |          |          |
| game                                                                                          | 1 UII                                                                                           | oughti    | ins subj  |         | n de ne  | ipiui   |         | 'ing in         | e icai  | me pi     | obien  | 115.          |          |          |          |
| Course                                                                                        | e Ot                                                                                            | ojective  | es:       |         |          |         |         |                 |         |           |        |               |          |          |          |
| 1.                                                                                            | Intr                                                                                            | oduce s   | students  | to Fi   | nite Ele | ment .  | Analy   | sis fur         | Idame   | ntals.    |        |               |          |          |          |
| 2.                                                                                            | Intr                                                                                            | oduce s   | students  | to ste  | ps invo  | lved i  | n FEA   | A, dom          | a in di | scretiz   | ation  | , poly        | nomia    | l interp | olation, |
|                                                                                               | app                                                                                             | lication  | n of bou  | ndary   | conditi  | ons, a  | ssemb   | oly of g        | global  | arrays    | , and  | soluti        | on of t  | the res  | ulting   |
|                                                                                               | alge                                                                                            | ebraic s  | ystems.   |         |          | _       |         |                 |         |           |        |               |          |          |          |
| 3.                                                                                            | To                                                                                              | enable    | the stud  | ents to | o formu  | late th | ne des  | ign pr          | oblem   | s into    | FEA.   |               |          |          |          |
| 4.                                                                                            | Unc                                                                                             | derstand  | the pra   | actica  | l (mode  | ling a  | nd ana  | ılysis)         | aspec   | 2 ts of t | ne FE  | A.            | 1.1      | 1 D      | 1.1      |
| 5.                                                                                            | App                                                                                             | bly this  | theory    | and pr  | actical  | know    | ledge   | to solv         | ve I-d  | , 2-d s   | tructu | ira l an      | d theri  | malPr    | oblems   |
|                                                                                               | mar                                                                                             | nua lly a | ind with  | using   | g compi  | iters.  |         |                 |         |           |        |               |          |          |          |
| Course                                                                                        | In                                                                                              | orning    | Outco     | mos •   |          |         |         |                 |         |           |        |               |          |          |          |
| Course                                                                                        |                                                                                                 |           | Outco     | incs.   |          |         |         |                 |         |           |        | ,             | <u> </u> | •        | -        |
| CO                                                                                            | Af                                                                                              | ter the   | comple    | etion   | of the c | course  | the s   | tuden           | t shou  | ild be    | BIO    | $\frac{1}{1}$ | Cogni    | tive     | -        |
| 601                                                                                           |                                                                                                 | le to     | 1.1       | .1      | · 1      | 1 1     | •       | 1               |         |           | leve   |               |          | tor      | -        |
| COI                                                                                           | Ur                                                                                              | iderstar  | nd the m  | nathen  | naticali | model   | ing an  | Id FEA          | 1.      |           |        | A             | nalyze   |          |          |
| CO2                                                                                           | Us                                                                                              | e of ad   | vanced    | softwa  | are for  | solvin  | g the j | proble          | ms an   | d         | II     | I U           | nderta   | ke       | 1        |
|                                                                                               | int                                                                                             | erpretir  | ng the re | esults. |          |         |         |                 |         |           |        |               |          |          |          |
| CO3                                                                                           | De                                                                                              | evelop s  | solution  | s of so | ome me   | chanic  | cal rea | l time          | probl   | ems.      | IV     | ' D           | evelop   | )        |          |
|                                                                                               |                                                                                                 |           |           |         |          |         |         |                 |         |           |        |               |          |          |          |
| CO4                                                                                           | Es                                                                                              | timate 1  | the defo  | ormatio | on, stre | sses, s | trains  | and re          | eaction | ns        | V      | E             | stimate  | e        |          |
|                                                                                               |                                                                                                 |           |           |         |          |         |         |                 |         |           |        |               |          |          | <u>_</u> |
|                                                                                               |                                                                                                 |           |           |         |          | CO      | -PO N   | Aappi           | ng:     |           |        |               |          |          |          |
|                                                                                               |                                                                                                 |           |           |         |          |         |         |                 | C       |           |        |               |          |          |          |
|                                                                                               |                                                                                                 |           |           |         |          |         |         |                 |         |           |        |               |          |          |          |
|                                                                                               |                                                                                                 |           |           |         | UI       | M - FF  | A: CO   | <b>) - PO</b> I | Mappir  | ıg        |        |               |          |          |          |
| Cours                                                                                         | e                                                                                               |           |           |         |          | Р       | O's     |                 |         | -         |        | •             |          | PSO      | S        |
| Outcom                                                                                        | ies                                                                                             | 1         | 2         | 3       | 4        | 5       | 6       | 7               | 8       | 9         | 10     | 11            | 1        | 2        | 3        |
| CO1                                                                                           |                                                                                                 | 3         |           |         |          |         |         |                 | 1       |           | 1      | 1             |          |          |          |
| CO2                                                                                           |                                                                                                 | 3         | 3         |         |          |         |         |                 | 1       |           |        | 2             | 2        |          | 2        |
| CO3                                                                                           |                                                                                                 |           | 3         |         | 3        | 3       |         |                 | 1       |           |        | 1             | 1        | 1        |          |
| CO4                                                                                           |                                                                                                 |           |           | 3       | 2        |         |         |                 | 1       |           |        | 1             | 1        |          |          |
|                                                                                               |                                                                                                 |           |           |         |          | l:low,  | 2:med   | lium,3          | :high   |           |        | -             | -        |          |          |

#### Assessments:

#### Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination(MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment | Marks |
|------------|-------|
| ISE1       | 10    |
| MSE        | 30    |
| ISE2       | 10    |
| ESE        | 50    |

ISE1 and ISE2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on100% course content with 60-70% weightage for course content (Normally last three modules) covered after MSE.

**Course Contents:** 

#### Unit 1:---

#### Introduction

Introduction, An overview of engineering problems and methods for solving them, demonstration by an example – Physical system – Physical model – Mathematical model – Methods for solution – Solution. Need for using numerical method to solve engineering problems-Types of Engineering Analysis.

7Hrs.

8Hrs.

8Hrs.

8Hrs.

#### Unit 2:---

#### Introduction to 1D bar element problems:

Introduction to steps of FEM for the problem of finding elongation of an axially loaded bar as an example of a 1-D problem. Step- by-step development of the procedure of Galerkin weighted residual FEM for the bar problem - residual error, weighting function, discretization, elements and nodes, local variables, approximation functions (or shape functions), need for numerical integration and co-ordinate transformation, Gauss Legendre integration scheme. Process of assembly of local matrix equations into global, solution to the equations, equation solvers

#### Unit 3:---

#### Introduction to 2D truss element problems:

FE formulation for truss, FEM procedure followed for the truss problems. Computation of derived quantities like strains and stresses from the nodal values of the field variables, Result post processing. Finite element formulation using variational and virtual work methods, demonstration for bar and truss problems.

#### Unit 4:---

#### 2-D Problem from structural mechanics:

Introduction to 2-dimensional problem from structural mechanics static analysis, Triangular and quadrilateral elements, Basic concepts of Plain stress and Plain strain. Constant strain triangular element Stiffness Matrix and Equation. Finite element Solution of a plane stress Problem. Higher order elements, iso-parametric elements

| Unit 5:                                                                                                                                                                               | 8Hrs.    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Potential field problems:                                                                                                                                                             |          |
| Introduction to potential field problems, examples from structural mechanics - of torsion of noncircular prismatic bars, 2-D steady state heat transfer with convection from surface. |          |
| Sources of errors, error analysis, remedies to minimize the errors. Application of FEM to Axisymmetric problems, Axisymmetric solids under rotation.                                  |          |
|                                                                                                                                                                                       |          |
| Unit 6:                                                                                                                                                                               | 6Hrs.    |
| Non-linear Static elasticity, Buckling, Modal, Transient Response, Harmonic Response,                                                                                                 | ,        |
| Shock Spectrum Analysis. Translators, types and use, importance of translators.                                                                                                       |          |
| Test Deslay                                                                                                                                                                           | <u> </u> |
| lext Books:                                                                                                                                                                           |          |
| 1. M. J. Fagan, Finite element analysis, Longman Scientific and Technical                                                                                                             |          |
| 2. D. L. Logan, A first course in finite element method, 4 ed. Cengage learning                                                                                                       |          |
| 3. J. N. Reddy, An introduction to the finite element method, 2 ed. McGraw Hill                                                                                                       |          |
| Datampo Raals.                                                                                                                                                                        |          |
| 1 S. S. Dag the finite element method in engineering 4 ad Electric Science & Technology                                                                                               | Doolra   |
| 1. 5. 5. Kao, the finite element method in engineering, 4 ed. Elsevier Science & Technology                                                                                           | BOOKS,   |
|                                                                                                                                                                                       |          |
| 2. T. A. Stolarski, Engineering analysis with ANSYS Software, Elsevier 2006                                                                                                           |          |
| 3. Erdogan Madenci, Ibrahim Guven, The Finite Element Method And Applications In Engi                                                                                                 | neering  |
| Using Ansys, Springer 2017.                                                                                                                                                           |          |
| 4. N.S. Gokhale, S.S. Deshpande, S.V. Bedekar, A.N. Thite, Practical Finite Element Analys                                                                                            | is.      |

4. N.S. Gokhale, S.S. Deshpande, S.V. Bedekar, A.N. Thite, Practical Finite Element Analysis, Finite to Infinite Publication

| Title of the Course: MECHATRONICS | L | Т | Р | Credit |
|-----------------------------------|---|---|---|--------|
| Course Code: UMEPC0603            | 2 | - | - | 2      |

Course Pre-Requisite: Knowledge of basic Electronics and Electrical Engineering.

**Course Description:** Studying the mechatronics course is of importance due to the global demand and developments in Mechatronic systems and automated manufacturing planning and controlling activities etc. The mechanical systems are becoming smart and for designing and developing such smart systems students of mechanical engineering must understand basic elements of smart systems such as sensors, signal conditioning devices, microcontrollers, digital logic and programs for automating the processes.

#### **Course Learning Objectives:**

CLO1:To learn various concepts of automation, Mechatronics and PLC and the integration of different branches of engineering in Mechatronics.

**CLO2:**To prepare graduates of mechanical engineering with comprehensive knowledge of Mechatronics to enable them to apply the relevant knowledge and technologies for the design and realization of innovative systems and products.

CLO3:To prepare Mechanical Engineering students for advanced graduate studies in Mechatronics, Manufacturing engineering and related field.

| Course     | Learn                                                                                  | ing Ou                                                                                                 | tcomes  | 5:       |          |         |            |            |       |        |                   |      |               |      |  |
|------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------|----------|----------|---------|------------|------------|-------|--------|-------------------|------|---------------|------|--|
| CO         | After successful completion of the course the student should beable                    |                                                                                                        |         |          |          |         |            |            |       | e Bloo | Bloom's Cognitive |      |               |      |  |
| CO         | to                                                                                     | to                                                                                                     |         |          |          |         |            |            |       |        |                   | el   | Descriptor    |      |  |
| CO1        | Sele                                                                                   | ct appi                                                                                                | ropriat | e senso  | or for g | iven aj | pplicat    | ion        |       |        | Ι                 | R    | emembe        | ring |  |
| CO2        | Clas                                                                                   | sify di                                                                                                | fferent | t signal | l condi  | tioning | g techn    | iques      |       |        | II                | U    | nderstan      | ding |  |
| CO3        | Expl<br>in me                                                                          | <b>Explain</b> the various concepts related to different microcontrollers used in mechatronic systems. |         |          |          |         |            |            |       |        | <sup>d</sup> II   | U    | Understanding |      |  |
| CO4        | <b>Solve</b> scenarios of automating the processes using the PLC programming approach. |                                                                                                        |         |          |          |         |            |            | C III | [      | Applying          |      |               |      |  |
| CO-PO      | ,PSO I                                                                                 | Mappir                                                                                                 | ıg:     |          |          |         |            |            |       |        |                   |      |               |      |  |
| CO         | PO1                                                                                    | PO2                                                                                                    | PO3     | PO4      | PO5      | PO6     | <b>PO7</b> | <b>PO8</b> | PO9   | PO10   | PO11              | PSO1 | PSO2          | PSO3 |  |
| CO1        | 2                                                                                      | 1                                                                                                      | 1       |          |          |         |            |            |       |        |                   | 1    | 1             | 1    |  |
| CO2        | 3                                                                                      | 1                                                                                                      | 2       |          |          |         |            |            |       |        |                   | 1    | 1             | 1    |  |
| <b>CO3</b> | 2                                                                                      | 1                                                                                                      | 2       | 1        | 2        |         |            |            |       |        |                   | 2    | 2             | 2    |  |
| CO4        | 2                                                                                      | 1                                                                                                      | 2       | 1        | 2        |         |            |            |       |        |                   | 2    | 3             | 3    |  |

1:Low 2:Medium 3: High

#### Assessments :

#### Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Components | Marks |
|------------|-------|
| ISE 1      | 10    |
| MSE        | 30    |
| ISE 2      | 10    |
| ESE        | 50    |

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

| Course Contents:                                                                                                                                                                                                         | Hours |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Unit 1: -Introduction                                                                                                                                                                                                    | 08    |
| a)Introduction:Definition, Mechatronics advantages and its applications, Components of Mechatronic                                                                                                                       |       |
| Systems                                                                                                                                                                                                                  |       |
| b) Sensors and Transducers: Performance terminology, Contact and non-contact type switches and proximity sensors- inductive, capacitive, optical, pneumatic, potentiometric, thermal, incremental and absolute encoders. |       |
| Unit 2: -Signal Conditioning and Actuators                                                                                                                                                                               | 07    |
| a)Signal Conditioning: Signal conditioning processes, voltage divider, rectification, Operational Amplifiers:                                                                                                            | -     |
| inverting and non-inverting, summing, integrating, differential, analog to digital and digital to analog                                                                                                                 |       |
| converters, multiplexing and de-multiplexing                                                                                                                                                                             |       |
| b)Actuators: Brushless DC servomotors, timing motors, SCR (Silicon Controlled Rectifiers) motors, Stepper                                                                                                                |       |
| motor                                                                                                                                                                                                                    |       |

| Unit 3: - Introduction to Microcontroller                                                               | 07  |
|---------------------------------------------------------------------------------------------------------|-----|
| Introduction to Microcontroller, Comparison between microprocessor and microcontroller, Organization of | i a |
| microcontroller system, Architecture of 8051, Pin diagram of 8051, Addressing modes                     |     |
| Introduction to Arduino, Types of Arduinos, Arduino Pin Diagram, Basics of Programming, Sample Circuit  | ts  |
| Unit 4: - Programmable Logic Controllers (PLC)                                                          | 08  |
| Introduction to PLC, components of PLC Input-output module, Ladder diagram and PLC programming          | ng  |
| fundamentals: logic functions, latching, sequencing, timers (Delay On Timer, Delay OFF Timer, Cascadin  | ng  |
| of Timers) counters (Up Counter, Down Counter), jumps, Internal relays, Disagreement circuit, Majori    | ity |
| circuit.                                                                                                | 5   |
|                                                                                                         |     |
| Textbooks:                                                                                              |     |
| 1. "Mechatronics", W. Bolton, Pearson Education, 4th Edition.                                           |     |
| 2. "Mechatronics", Mahalik, TATA McGraw Hill, (2006) Reprint,                                           |     |
| 3. "Microprocessor 8085", Gaokar Prentice Hall of India, 5th Edition.                                   |     |
| 4. "The 8051 Microcontroller - A System Approach", by Muhammad A. Mazidi, 1st Ed., PHI                  |     |
| 5. "Programmable Logical Controller", Hackworth, Pearson Education, (2008).                             |     |
| 6. "Programmable Logical Controller". Reis Webb, Prentice Hall of India 5th Edition.                    |     |
| Reference Books:                                                                                        |     |
| 1. "Mechatronics", AppuKuttam, Oxford Publications, 1st Edition.                                        |     |
| 2. "Automated Manufacturing Systems", S. Brain Morris, Tata McGraw Hill.                                |     |
| 3. "Mechatronics and Microprocessor", Ramchandran, Willey India, (2009).                                |     |
| 4. "Mechatronics: Integrated Mechanical Electronic System", Ramchandran, Willey India, 1st Edition      | 1.  |
| 5. "Programmable Logical Controller", Gary Dunning Cengage Learning, 3rd Edition.                       |     |
| 6. "Programmable Logic Controllers and programming concepts", JojiParambath.                            |     |
| 7. "Mechatronics Source Book", N C Braga, Cengage Learning.                                             |     |

| Title of the Course: Fault Diagnosis and Condition                                         | L     | Τ   | P    | Credit  |  |  |  |
|--------------------------------------------------------------------------------------------|-------|-----|------|---------|--|--|--|
| Monitoring                                                                                 | 02    |     |      | 02      |  |  |  |
| Course Code: UMEPE0611                                                                     | 03    | -   | -    | 03      |  |  |  |
| Course Pre-Requisite: Basics of Mathematics, Physics, Analysis of Mechanical Elements,     |       |     |      |         |  |  |  |
| Dynamics of Machines, Mechanical Vibrations.                                               |       |     |      |         |  |  |  |
| Course Description: In Industry, it is necessary to monitor the condition of equipments to |       |     |      |         |  |  |  |
| avoid down time of machines and hence improve productivity of pla                          | nt. T | her | e ai | re many |  |  |  |
| maintenance strategies in which condition monitoring using vibrations are most important.  |       |     |      |         |  |  |  |
| The subject contains basics of condition monitoring and various techniques used such as    |       |     |      |         |  |  |  |
| vibration analysis, motor signature analysis, NDT methods etc. The subject emphasizes on   |       |     |      |         |  |  |  |

practical approach of condition monitoring.

#### **Course Objectives:**

- 1. To take overview of basic concepts of maintenance and condition monitoring.
- 2. To study vibration analysis of rotating elements for condition monitoring.
- 3. To acquaint students with the vibration measuring instruments and condition monitoring.
- 4. To apply various techniques of condition monitoring to engineering applications.

### **Course Learning Outcomes:**

| CO         | Aft                                                                                     | After the completion of the course the student should be Bloom's Cognitive |       |     |     |     |      |     |       |     |      |      |      |      |   |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|-----|-----|-----|------|-----|-------|-----|------|------|------|------|---|
|            | able to level Descriptor                                                                |                                                                            |       |     |     |     |      |     |       |     |      |      |      |      |   |
| C01        | I Explain fundamentals of maintenancestrategies andIIUnderstandingcondition monitoring. |                                                                            |       |     |     |     |      |     |       |     |      |      |      |      |   |
| CO2        | <b>2</b> Identify fault and state condition of rotating III Applying equipment.         |                                                                            |       |     |     |     |      |     |       |     |      |      |      |      |   |
| CO3        | 3 Analyze response of mechanical system and provide IV Analyze corrective action.       |                                                                            |       |     |     |     |      |     |       |     |      |      |      |      |   |
| <b>CO4</b> | 4 Develop condition monitoring system for given equipment. V Design                     |                                                                            |       |     |     |     |      |     |       |     |      |      |      |      |   |
|            |                                                                                         |                                                                            |       |     |     | CC  | D-PO | Map | ping: |     |      |      |      |      |   |
| СО         | PO1                                                                                     | PO2                                                                        | PO3   | PO4 | PO5 | PO6 | PO7  | PO8 | PO9   | P10 | PO11 | PSO1 | PSO2 | PSO3 |   |
| CO1        | 3                                                                                       | 2                                                                          | 2     | 1   | 2   |     |      |     |       |     |      | 2    | 2    | 2    |   |
| CO2        | 3                                                                                       | 2                                                                          | 2     | 1   | 2   |     |      |     |       |     |      | 2    | 2    | 2    |   |
| CO3        | 3                                                                                       | 2                                                                          | 2     | 1   | 1   |     |      |     |       |     |      | 2    | 2    | 1    |   |
| CO4        | 3                                                                                       | 2                                                                          | 2     | 1   | 1   | 2   | 1    | 1   |       |     |      | 3    | 2    | 1    |   |
| 1:low,     | 2:me                                                                                    | dium,                                                                      | 3:hig | h   |     |     |      |     |       |     |      |      |      |      | • |

Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment | Marks |
|------------|-------|
| ISE1       | 10    |
| MSE        | 30    |
| ISE2       | 10    |
| ESE        | 50    |

| MSE: Assessment is based on 30% of course content (Normally first three Units)         ESE: Assessment is based on 100% course content with 60-70%weightage for course cor         (normally last three units) covered after MSE.         Course Contents:         Unit1:CONDITION MONITORING TECHNIQUES         Introduction to Maintenance Strategies, Condition monitoring, definition, Types of         condition monitoring, advantages and limitations of different condition monitoring         techniques like wear debris monitoring, oil monitoring, vibration monitoring, and         thermography.         Unit 2:DATA ACQUISITION         Introduction, collection of vibration signal, vibration transducers, characteristics         and mountings, conversion of vibrations to electrical signal.         Unit 3:SIGNAL PROCESSING AND ITS APPLICATIONS         Time and Frequency domain Signal analysis, Data Acquisition Systems and         Filtering, Fourier Series and FFT, Instrumentation, Data Recording.         Unit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS | Hrs.                            |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| ESE: Assessment is based on 100% course content with 60-70% weightage for course correction (normally last three units) covered after MSE.         Course Contents:         Unit1:CONDITION MONITORING TECHNIQUES         Introduction to Maintenance Strategies, Condition monitoring, definition, Types of condition monitoring, advantages and limitations of different condition monitoring techniques like wear debris monitoring, oil monitoring, vibration monitoring, and thermography.       07 I         Unit 2:DATA ACQUISITION       07 I         Introduction, collection of vibration signal, vibration transducers, characteristics and mountings, conversion of vibrations to electrical signal.       07 I         Unit 3:SIGNAL PROCESSING AND ITS APPLICATIONS       08 I         Time and Frequency domain Signal analysis, Data Acquisition Systems and Filtering, Fourier Series and FFT, Instrumentation, Data Recording.       08 I         Unit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS       08 I                                                              | Hrs.<br>Hrs.                    |                      |
| (normally last three units) covered after MSE.         Course Contents:         Unit1:CONDITION MONITORING TECHNIQUES         Introduction to Maintenance Strategies, Condition monitoring, definition, Types of condition monitoring, advantages and limitations of different condition monitoring techniques like wear debris monitoring, oil monitoring, vibration monitoring, and thermography.       07 I         Unit 2:DATA ACQUISITION       07 I         Introduction, collection of vibration signal, vibration transducers, characteristics and mountings, conversion of vibrations to electrical signal.       07 I         Unit 3:SIGNAL PROCESSING AND ITS APPLICATIONS       08 I         Time and Frequency domain Signal analysis, Data Acquisition Systems and Filtering, Fourier Series and FFT, Instrumentation, Data Recording.       08 I         Unit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS       08 I                                                                                                                                                          | Hrs.<br>Hrs.<br>Hrs.            |                      |
| <td co<="" td=""><td>Hrs.<br/>Hrs.<br/>Hrs.</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <td>Hrs.<br/>Hrs.<br/>Hrs.</td> | Hrs.<br>Hrs.<br>Hrs. |
| Unit :CONDITION MONITORING TECHNIQUES         Introduction to Maintenance Strategies, Condition monitoring, definition, Types of condition monitoring, advantages and limitations of different condition monitoring techniques like wear debris monitoring, oil monitoring, vibration monitoring, and thermography.         Unit 2:DATA ACQUISITION       07 I         Introduction, collection of vibration signal, vibration transducers, characteristics and mountings, conversion of vibrations to electrical signal.       07 I         Unit 3:SIGNAL PROCESSING AND ITS APPLICATIONS       08 I         Time and Frequency domain Signal analysis, Data Acquisition Systems and Filtering, Fourier Series and FFT, Instrumentation, Data Recording.       08 I         Unit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS       08 I                                                                                                                                                                                                                                                     | Hrs.<br>Hrs.<br>Hrs.            |                      |
| Unit 2:DATA ACQUISITION       07 I         Introduction, collection of vibration signal, vibration transducers, characteristics and mountings, conversion of vibrations to electrical signal.       07 I         Unit 3:SIGNAL PROCESSING AND ITS APPLICATIONS       08 I         Time and Frequency domain Signal analysis, Data Acquisition Systems and Filtering, Fourier Series and FFT, Instrumentation, Data Recording.       08 I         Unit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS       08 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.<br>Hrs.                    |                      |
| Unit 3:SIGNAL PROCESSING AND ITS APPLICATIONS08 ITime and Frequency domain Signal analysis, Data Acquisition Systems and<br>Filtering, Fourier Series and FFT, Instrumentation, Data Recording.08 IUnit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs.                            |                      |
| Time and Frequency domain Signal analysis, Data Acquisition Systems and Filtering, Fourier Series and FFT, Instrumentation, Data Recording.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                      |
| Unit 4:MACHINERY FAULT DIAGNOSIS USING VIBRATION ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                      |
| Unbalance, bent shaft, Eccentricity, Misalignment, looseness, Belt drive 07 I problems, gear defects, bearing defects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs.                            |                      |
| Unit 5:- FAULT DETECTIONS IN ROTATING MACHINES 08 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs.                            |                      |
| Signal classification, signals generated by rotating machines and Case studies on such as Fans, Blowers, and Pumps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                      |
| Unit 6:-:- FAULT DETECTIONS IN RECIPROCATING MACHINES 08 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs.                            |                      |
| Signals generated by reciprocating machines time frequency diagrams, torsional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                      |
| vibrations and Case studies on such as IC Engines, automobiles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                      |
| Textbooks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                      |
| 1. Machinery vibration Analysis & Predictive Maintenance by Paresh Girdhar, Elsevier publishers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                      |
| 2. Mechanical Fault diagnosis and condition monitoring by R. A .Collacott.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                      |
| 3. Robert Bond Randall, Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive applications, 1st Edition, John Wiley & Sons Ltd., 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t                               |                      |
| Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                      |
| <ol> <li>Vibration monitoring and diagnosis by R. A. Collacott.</li> <li>First course on condition monitoring in the process industries, by M.J.Neale, Nov<br/>Manchester.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979,                           |                      |
| 3. Management of Industrial Maintenance by Newman-Butterworth, March 1978.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                      |
| 4. Condition Monitoring Manual by National Productivity council, New Delhi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                      |
| 5. John S. Mitchell, Introduction to Machinery Analysis and Monitoring, 1st Edition, Penn<br>Books,1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well                            |                      |
| 6. R. C. Mishra, K. Pathak, Maintenance Engineering and Management, 1st Edition, Prenti<br>Hall of India Pvt. Ltd., 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ice                             |                      |
| 7. Amiya Ranjan Mohanty, Machinery Condition Monitoring: Principles and Practices, 1st Edition, CRC press, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t                               |                      |

| Title of the Course: Metal Forming and Joining Technology                                     | L | Т | Р | Credit |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|---|---|---|--------|--|--|--|--|--|
| Course Code: UMEPE0612                                                                        | 3 |   |   | 3      |  |  |  |  |  |
| Course Pre-Requisite: basic manufacturing processes.                                          |   |   |   |        |  |  |  |  |  |
|                                                                                               |   |   |   |        |  |  |  |  |  |
| Course Description: Metal forming techniques are use create different sheet metal product for |   |   |   |        |  |  |  |  |  |
| engineering and residential applications. Theories of forming processes are good application  |   |   |   |        |  |  |  |  |  |
| of theory of plasticity like yielding criteria, application of two- and three-dimensional     |   |   |   |        |  |  |  |  |  |
| problem.                                                                                      |   |   |   |        |  |  |  |  |  |

#### **Course Objectives:**

1. Gain the fundamental knowledge about metal forming and plastic tech. processes

2. Understand the analysis of flow of material and its properties during the processes

3. Selection the process of metal forming as per the applications such as wire drawing, extrusion, rolling forging etc.

#### **Course Learning Outcomes:**

| CO         | After the completion of the course the student should be    | Bloom's Cognitive |            |  |  |
|------------|-------------------------------------------------------------|-------------------|------------|--|--|
|            | able to                                                     | level             | Descriptor |  |  |
| CO1        | Select process parameter of different metal forming and     | 1                 | Remember   |  |  |
|            | joining processes.                                          |                   |            |  |  |
| CO2        | Explain various basic concepts of metal forming and joining | 1                 | Remember   |  |  |
|            | processes                                                   |                   |            |  |  |
| CO3        | Discuss various operations in metal forming and joining     | 4                 | Analyze    |  |  |
|            | processes                                                   |                   |            |  |  |
| <b>CO4</b> | Analyze various processes for specific manufacturing        | 3                 | Apply      |  |  |
|            | needs.                                                      |                   |            |  |  |

# **CO-PO Mapping:**

|    |   | РО |   |   |   |   |   |   |   |    |    |   |   | PSO |  |  |
|----|---|----|---|---|---|---|---|---|---|----|----|---|---|-----|--|--|
| CO | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3   |  |  |
| 1  | 2 | 1  | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1  | 0  | 2 | 1 | 1   |  |  |
| 2  | 1 | 1  | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1  | 0  | 2 | 1 | 1   |  |  |
| 3  | 1 | 1  | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 1  | 0  | 2 | 1 | 1   |  |  |
| 4  | 1 | 1  | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 1  | 2  | 2 | 1 | 1   |  |  |

# Indicate mapping strength as 3 (High), 2 (Medium), 1 (Low)

# Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment | Marks |
|------------|-------|
| ISE 1      | 10    |
| MSE        | 30    |
| ISE 2      | 10    |

| ESE 50                                                                                                               |               |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
| ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussi                                    | ons etc.      |  |  |  |  |  |  |
| MSE: Assessment is based on 50% of course content (Normally first three modules)                                     |               |  |  |  |  |  |  |
| ESE: Assessment is based on 100% course content with60-70% weightage for course content                              |               |  |  |  |  |  |  |
| (normally last three modules) covered after MSE.                                                                     |               |  |  |  |  |  |  |
| Course Contents:                                                                                                     |               |  |  |  |  |  |  |
| Unit 1: Theory of Plasticity                                                                                         | 6 Hrs.        |  |  |  |  |  |  |
| Flow curve. Concepts of true stress and true strain, plane stress condition, stress tensor.                          | 0 11150       |  |  |  |  |  |  |
| vield criteria and their comparison., plastic stress-strain relationships. Strain tensor, strain                     |               |  |  |  |  |  |  |
| hardening. Strain rate, Friction and Lubrication in metal forming                                                    |               |  |  |  |  |  |  |
|                                                                                                                      |               |  |  |  |  |  |  |
| Unit 2:- Introduction to Forging and rolling                                                                         | 6 <b>Hrs.</b> |  |  |  |  |  |  |
| Introduction to Forging                                                                                              |               |  |  |  |  |  |  |
| Basic operations, types of forging, forging hammers/ presses, forging stress and force                               |               |  |  |  |  |  |  |
| calculations, die design considerations, forging defects, applications                                               |               |  |  |  |  |  |  |
| Introduction to Rolling:                                                                                             |               |  |  |  |  |  |  |
| Classification of rolling processes, rolling mill types, deformation of metal in rolling, roll                       |               |  |  |  |  |  |  |
| bite, elongation, reduction, defects in rolling, rolling of sheets, plates, bars, sections and                       |               |  |  |  |  |  |  |
| tubes, application                                                                                                   |               |  |  |  |  |  |  |
| Unit 3: Introduction to Extrusion and Drawing                                                                        | 6 <b>Hrs.</b> |  |  |  |  |  |  |
| Introduction to Extrusion                                                                                            |               |  |  |  |  |  |  |
| Equipment and principles, types of extrusion, direct, indirect, impact, hydrostatic, tube                            |               |  |  |  |  |  |  |
| extrusion, metal flow in extrusion, defects, factors affecting extrusion load,                                       |               |  |  |  |  |  |  |
| Introduction to Drawing:                                                                                             |               |  |  |  |  |  |  |
| drawing, Seemless nine manufacturing                                                                                 |               |  |  |  |  |  |  |
| Unit 4: Fundamentals of Matal Joining Tashnalogias, mashanisms for                                                   | 7 Um          |  |  |  |  |  |  |
| obtaining metallic continuity Eusion based processes: principle of fusion welding                                    | / 1115.       |  |  |  |  |  |  |
| processes, ovy fuel has welding, common are welding processes, loser hoom                                            |               |  |  |  |  |  |  |
| welding, spot welding processes, nower variants of fusion welding processes                                          |               |  |  |  |  |  |  |
| weiding, spot weiding processes, newer variants of fusion weiding processes                                          |               |  |  |  |  |  |  |
| Unit 5 · Solid liquid joining processes: brazing and soldering braze welding                                         | 7 Hrs         |  |  |  |  |  |  |
| Solid state joining processes: diffusion bonding, ultrasonic welding, and explosive                                  | / 1115.       |  |  |  |  |  |  |
| wolding and Adhesive joining                                                                                         |               |  |  |  |  |  |  |
| Unit ( Metallumical Aspects of Weldings weld thermal such thereis of                                                 | ( II.e.       |  |  |  |  |  |  |
| unit o :- Wietanurgical Aspects of Welding: weld thermal cycle, basics of                                            | о <b>пгз.</b> |  |  |  |  |  |  |
| residual stresses, Common issues related with joining technologies their causes                                      |               |  |  |  |  |  |  |
| and remedies: hardening and soliening of heat affected zone, porosity, cracking.                                     |               |  |  |  |  |  |  |
| I extbooks:                                                                                                          |               |  |  |  |  |  |  |
| 1. Manufacturing Processes – Begman, Amstead etc. (John Wiley)                                                       |               |  |  |  |  |  |  |
| 2. Kowe, Finiciples of industrial Metal Working Flocesses,<br>3. Forging and Forging Die Design Sharan Prasad Savena |               |  |  |  |  |  |  |
| 4 Rolling of Metals: Ivankove and Chaturvedi (Vantrik Publications Mumbai)                                           |               |  |  |  |  |  |  |
| 5. Extrusion - Pearson (McGraw Hill)                                                                                 |               |  |  |  |  |  |  |
| 6. Manufacturing Technology: Foundry, Forming and Welding by P.N. Rao (TMH)                                          |               |  |  |  |  |  |  |
| 7. Manufacturing Engineering Technology by Kalpakjian (Addison Wesley)                                               |               |  |  |  |  |  |  |
| 8. Manufacturing Processes for Engineering Materials by Kalpakjian (Addison Wesley)                                  |               |  |  |  |  |  |  |
| 9. Injection Mold Design, R.G.W. Pye 4/e, Affiliated East West Press Pvt. Ltd. New Delhi.                            |               |  |  |  |  |  |  |
|                                                                                                                      |               |  |  |  |  |  |  |
| References:                                                                                                          |               |  |  |  |  |  |  |
| 1] ASM Handbook on Forming                                                                                           |               |  |  |  |  |  |  |
| 21 Mashaniaal Matallynary (CI IInita) Diatan MaCuary IIili                                                           |               |  |  |  |  |  |  |

- 2] Mechanical Metallurgy (S.I. Units) Dieter, McGraw Hill3] Plastics for Industrial Use- Sasse John

Unit Learning Outcome: Metal Forming and Joining Technology

By the end of this unit, students should be able to:

- 1. Understand the Fundamentals of plasticity
- 2. Identify Different forging and rolling Processes:
- 3. Understand the Fundamentals of extrusion and drawing
- 4. Apply Knowledge of Equipment in Metal Joining:
- 5. Understand the Fundamentals solid liquid joining processes
- 6. Explore Advanced Joining Considerations

| Title of                                                                                    | f the Course: Advanced Automobile Design                               | Т          | Р       | Credit       |           |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|---------|--------------|-----------|--|--|--|--|--|--|
| Course                                                                                      | e Code: UMEPE0613                                                      | -          | -       | 3            |           |  |  |  |  |  |  |
| Course                                                                                      | e Pre-Requisite: basics Knowledge of 'Fundamer                         | ntals of A | Auton   | nobile Desi  | gn        |  |  |  |  |  |  |
| (Ready                                                                                      | (Ready Engineer Part -I)', CAD, General Design procedure is essential. |            |         |              |           |  |  |  |  |  |  |
| Course Descriptions The source source some of the prestical & real world design served for  |                                                                        |            |         |              |           |  |  |  |  |  |  |
| Course Description: The course covers some of the practical & real-world design aspects for |                                                                        |            |         |              |           |  |  |  |  |  |  |
| automo                                                                                      | obiles, especially for body-in-white (i.e. structures) an              | d trims (  | i.e. in | teriors). Th | is is one |  |  |  |  |  |  |
| of the                                                                                      | unique and highly advanced courses prepared by c                       | over 20    | senior  | experts of   |           |  |  |  |  |  |  |
| TECHI                                                                                       | NOLOGIES, PUNE working on multiple national and                        | d interna  | tional  | projects of  | whole-    |  |  |  |  |  |  |
| venicie                                                                                     | development. The course is intended to provide an                      | edge to    | the el  | ngineering   | students  |  |  |  |  |  |  |
| Course                                                                                      | Quitaomos (CO):                                                        |            |         |              |           |  |  |  |  |  |  |
|                                                                                             | Understand the fundamental concepts and term                           | inology    |         |              |           |  |  |  |  |  |  |
|                                                                                             | related to Body in-White (BIW) and automotive                          | nlastic    |         |              |           |  |  |  |  |  |  |
|                                                                                             | trims including their identification necessity and                     | product    | 2       | Under        | stand     |  |  |  |  |  |  |
|                                                                                             | lifecycle                                                              |            |         |              |           |  |  |  |  |  |  |
| CO2                                                                                         | Apply design principles and material selection crite                   | eria and   |         |              |           |  |  |  |  |  |  |
|                                                                                             | <b>Recommend</b> appropriate material for BIW and                      | Trims      | 2 5     | . Ap         | oly       |  |  |  |  |  |  |
|                                                                                             | considering factors like cost, safety, weight, manufa                  | acturing   | 3, 3    | Recom        | mend      |  |  |  |  |  |  |
|                                                                                             | methods, and vehicle regulations.                                      |            |         |              |           |  |  |  |  |  |  |
| CO3                                                                                         | Understand concepts of GD&T, joining techniq                           | ues for    |         |              |           |  |  |  |  |  |  |
|                                                                                             | sheet metal and plastic components, and                                | relevant   | 2       | Under        | stand     |  |  |  |  |  |  |
|                                                                                             | manufacturing processes for BIW and trims.                             |            |         |              |           |  |  |  |  |  |  |
| CO4                                                                                         | <b>Explain</b> the application of DFMEA and CAE tools                  | for the    |         |              |           |  |  |  |  |  |  |
|                                                                                             | design verification and analysis of BIW and plas                       | tic trim   |         |              |           |  |  |  |  |  |  |
|                                                                                             | components, including crashworthiness and durability                   |            |         |              |           |  |  |  |  |  |  |
|                                                                                             | assessments, and understand the significance of physical 2             |            |         |              |           |  |  |  |  |  |  |
|                                                                                             | testing and manufacturing sequences.                                   |            |         |              |           |  |  |  |  |  |  |
|                                                                                             |                                                                        |            |         |              |           |  |  |  |  |  |  |
| CO-PC                                                                                       | )* Manning:                                                            |            |         |              |           |  |  |  |  |  |  |

| CO-PC      | J. IVIa | ւրրուչ | 5   |     |     |     |     |     |     |           |           |      |      |      |
|------------|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----------|-----------|------|------|------|
| СО         | CO1     | CO2    | CO3 | CO4 | CO5 | CO6 | CO7 | CO8 | CO9 | CO-<br>10 | CO-<br>11 | PSO1 | PSO2 | PSO2 |
| <b>CO1</b> |         | 1      |     |     |     | 2   |     |     |     |           | 2         | 1    |      |      |
| CO2        | 2       | 1      | 3   |     | 3   |     |     |     |     |           | 1         | 1    |      | 1    |
| <b>CO3</b> | 2       |        |     |     |     |     |     |     |     |           | 2         | 1    |      |      |
| <b>CO4</b> | 2       | 3      | 2   | 2   | 3   | 2   |     |     |     |           | 3         | 3    | 2    |      |

#### Assessments:

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment                                                                                | Marks |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| ISE 1                                                                                     | 10    |  |  |  |  |  |  |
| MSE                                                                                       | 30    |  |  |  |  |  |  |
| ISE 2                                                                                     | 10    |  |  |  |  |  |  |
| ESE                                                                                       | 50    |  |  |  |  |  |  |
| ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. |       |  |  |  |  |  |  |

MSE: Assessment is based on 50% of course content (Normally first three modules)

| ESE: Assessment is based on 100% course content with 60-70% weightage for course           |               |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| content (normally last three modules) covered after MSE.                                   |               |  |  |  |  |
| Course Contents:                                                                           |               |  |  |  |  |
| Unit 1: Requirement Specification in the Pre-Program Stage:                                | 7 <b>Hrs.</b> |  |  |  |  |
| a) Introduction to BIW. Identification of commodities for BIW: Closures, Body              |               |  |  |  |  |
| Shell. BIW terminology. BIW Assembly.                                                      |               |  |  |  |  |
| b.) Introduction to Plastic trims. What is trim? Necessity of trim in automobile,          |               |  |  |  |  |
| Identification of various trim parts and their positions in vehicle. Various               |               |  |  |  |  |
| commodities of interior trim like Instrument panel, Centre console, Door trims,            |               |  |  |  |  |
| Pillar Trims, Seating Trims, Overhead Trims, Floor Carpets & Trunk trims.                  |               |  |  |  |  |
| c) Product life cycle and important gateways for BIW: PLM: Introductions,                  |               |  |  |  |  |
| Need, Benefits, Components/Elements. Phases of Product life cycle:                         |               |  |  |  |  |
| Unit 2: BIW and TRIM Design and Materials                                                  | 8 <b>Hrs.</b> |  |  |  |  |
| a) Design concepts and considerations in BIW: BIW parts: Sheet metal,                      |               |  |  |  |  |
| Extrusion, Cast, Moulding. Factors driving BIW Design like Package Space, Master           |               |  |  |  |  |
| Sections, Cost, Weight, Assembly Process, Manufacturing Methods, Vehicle                   |               |  |  |  |  |
| regulations. Design considerations for Sheet Metal Parts                                   |               |  |  |  |  |
| b) BIW Materials and Grades (Steel, Aluminium, composites): Basic material                 |               |  |  |  |  |
| selection criteria for automotive: Emissions, Safety and weight, Material Choice           |               |  |  |  |  |
| which is driven by Cost, Safety, Risk, Weight, Market Image, Emission.                     |               |  |  |  |  |
| Classification of steel grade and their properties. Use of aluminium in automotive         |               |  |  |  |  |
| domain and its properties. Use of Composites in automotive domain and its                  |               |  |  |  |  |
| properties. Light weight material for future automotive industry.                          |               |  |  |  |  |
| c) Trim Materials in Automotive: Material Classification and Properties, Plastic           |               |  |  |  |  |
| Material and their applications: Polypropylene, ABS, Polycarbonate,                        |               |  |  |  |  |
| Polyoxymethylene, Polyethylene, Polyamides, Usage and Selection Criteria, Plastic          |               |  |  |  |  |
| Additives: Types of additives, Impact of additives, , Application in instrument            |               |  |  |  |  |
| Panel Assembly.                                                                            |               |  |  |  |  |
|                                                                                            |               |  |  |  |  |
| Unit 3: GD & T for BIW:                                                                    | 7 <b>Hrs.</b> |  |  |  |  |
| b) Concept of GD & T, Importance of GD&T. BIW Dimensional Requirement.                     |               |  |  |  |  |
| BIW Dimensional applications. GD&T Symbols. Illustration of Feature Control                |               |  |  |  |  |
| Frame.                                                                                     |               |  |  |  |  |
| a) Sheet Metal Joining Process: Importance. Welding, Resistant Spot welding:               |               |  |  |  |  |
| Advantages, Disadvantages of RSW. Concept of Tailor Welded Blanks(TWB),                    |               |  |  |  |  |
| Types of TWB. Laser Beam Welding (LBW): Types, Advantages, Disadvantages.                  |               |  |  |  |  |
| Self Piercing Rivets (SPR) and its advantages. Adhesive Bonding: Types, Types of           |               |  |  |  |  |
| joints used in it.                                                                         |               |  |  |  |  |
| c) Manufacturing Processes of plastic trim: Vacuum Forming, Injection                      |               |  |  |  |  |
| Molding, Heat Staking, Extrusion Blow molding along with their applications                |               |  |  |  |  |
| characteristics and limitations.                                                           |               |  |  |  |  |
| Unit 4: DFMEA & CAE                                                                        | 8 <b>Hrs.</b> |  |  |  |  |
| DFMEA (Design Failure Mode and Effect Analysis): Concept, Objectives of                    |               |  |  |  |  |
| DFMEA. Over view of DFMEA process, Benefits of DFMEA, Prerequisites of                     |               |  |  |  |  |
| DFMEA, DFMEA Flow, DFMEA team, DFMEA inputs & Outputs, DFMEA                               |               |  |  |  |  |
| Methodology,                                                                               |               |  |  |  |  |
| <b>Design of Plastic part:</b> Overview, Wall thickness, Radii, Draft angle, Ribs, Bosses, |               |  |  |  |  |
| Snaps,                                                                                     |               |  |  |  |  |
| b) Concept of CAE, Applications of CAE, Various CAE methods for Design                     |               |  |  |  |  |

| verification of BIW viz. Structural Analysis, Fatigue life Prediction, Noise and vibration, Crash Impact analysis, Multibody Dynamics, Thermal analysis, CFD. Verification and Validation with respect to FEA. Concept of FEA, Steps of FEA, meshing, Elements: Selection and its types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Unit 5: CAE ANALYSIS<br>a) CAE Analysis of BIW: - Concept of Load Case, NVH Analysis: Load cases for<br>NVH analysis: Static Bending stiffness, Static torsion stiffness, Natural frequency<br>and normal modes, , CAE Crash Analysis: 1) Full vehicle level: Frontal, Side and<br>rear Impact, 2) Component Level: Seating and roof crush., Durability analysis:<br>Various load cases like Front and Rear Recovery analysis, Trailed towing analysis,<br>Floor pan fatigue, Roof and Body side oil canning, Vehicle jacking analysis,<br>Vehicle hoisting analysis, Fatigue analysis of BIW.<br>CAE Analysis OF Plastic Trims:. Types of CAE Analysis: Head Impact Analysis,<br>Side Impact Analysis, Knee Impact Analysis, Durability Analysis, Creep Analysis,<br>Moldflow Analysis. Applications of CAE Analysis. CAE Load cases for Interior<br>Trims: Airbag deployment, Side occupant protection, Interior trims durability, Mold<br>flow analysis. Gateway support. |  |  |  |  |  |  |
| <ul> <li>Unit 6:- Test Validation &amp; Assessment</li> <li>: Crashworthiness, Head Injury Criteria, Vehicle physical testing, Need of vehicle testing, Crash test requirements, Introduction to dummies, Importance of Dummies, Types of dummies. Frontal Crash test, Rear and side impact testing, Pedestrian head impact test, roll over test. Four post durability test. Wind tunnel testing. Automotive safety considering plastic components,</li> <li>Manufacturing - Sequence (after validation):, Welding &amp; Assembly: Body shop, Paint Shop, Trim- chassis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| <ol> <li>Textbooks:</li> <li>Morello, L., Rosti Rossini, L., Pia, G., &amp;Tonoli, A. (2010). <i>The Automotive Body:</i><br/><i>Volume I: Components Design (Mechanical Engineering Series)</i>. Retrieved from<br/>http://www.springer.com/1161A2</li> <li>Huang, M. (2002). <i>Vehicle crash mechanics</i>. CRC PressA2</li> <li>Failure Mode and Effect Analysis: FMEA from Theory to Execution, <u>D. H. Stamatis</u>,<br/>ASQ Quality Press, 2003, 0873895983, 9780873895989.</li> <li>IGETIT PORTAL OF TATA TECHNOLOGIES.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| <ul> <li>REFERENCE BOOKS:</li> <li>1. Boljanovic, V. (2004). SHEET METAL FORMING PROCESSES AND DIE DESIGN. A1 and A2</li> <li>2. Weber, J. (2009). Automotive development processes: Processes for successful customer oriented vehicle development. Automotive Development Processes: Processes for Successful Customer Oriented Vehicle Development. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01253-2A2</li> <li>3. An Introduction to Modern Vehicle Design. Edited by Julian Happian-Smith,© Reed Educational and Professional Publishing Ltd 2002—A2</li> <li>4. Automotive Product Development A Sustema Engineering Implementation by Vively D</li> </ul>                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |

Bhise,© 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business.—A2

- 5. Design and Manufacture of Plastic Components for Multifunctionality. (2016). In *Design* and Manufacture of Plastic Components for Multifunctionality. https://doi.org/10.1016/c2014-0-00223-7-A2
- Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes using Failure Mode and Effects Analysis, Carl Carlson, ISBN: 978-1-118-00743-3 June 2012.
- 7. Schwartz & Goodman "Plastic materials and Processing"
- 8. Irwin Rubin, "Handbook of plastic materials and technology"
- 9. Fred W. Billmeyer, "Textbook of Polymer Sciences".

Mr. S B Sangale

Course Co-ordinator

#### **Title of the Course: INTRODUCTION TO** Р С L Т **COMPUTATIONALFLUIDDYNAMICS(CFD)** CourseCode:UMEPE0614 3 3 Course Pre-Requisite: Fluid Mechanics, Heat Transfer, Numerical Analysis. **Course Description:** Computationalfluiddynamics(CFD) is a branchoffluid mechanics that uses numerical analysis and data structures to solve and analyze problems that involve fluid flows. Computers are used to perform the calculations required to simulate the interaction of liquids and gases with surfaces defined by boundary conditions which solve the problem and produce simulated results. **Course Objectives:** To provide students with a fundamental understanding of the principles of CFD. • To familiarize students with different numerical methods used in CFD. • To introduce students to the process of grid generation. •

- To provide students with practical experience in using commercial CFD software.
- To enable students to interpret and analyze CFD results.

| Course Learning Outcomes: |                                                                                                                        |                   |            |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------|------------|--|--|--|--|
| CO                        | After the completion of the course the student should be                                                               | Bloom's Cognitive |            |  |  |  |  |
|                           | ableto                                                                                                                 | level             | Descriptor |  |  |  |  |
| CO                        | Understand the basic fundamental of the principles of CFD.                                                             | 2                 | Understand |  |  |  |  |
| CO                        | Implement the different numerical methods used in CFD.                                                                 | 2                 | Apply      |  |  |  |  |
| CO                        | Apply governing equations for fluid flow and Generate appropriate computational grids for numerical solutions.         | 3                 | Apply      |  |  |  |  |
| CO                        | Application of CFD software and evaluation of CFD results by comparing with available data, and evaluate the findings. | 5                 | Evaluate   |  |  |  |  |

# CO-PO, PSO Mapping

| CO - PO Mapping |                   |   |   |   |   |   |   |   |   |    |    |   |   |   |
|-----------------|-------------------|---|---|---|---|---|---|---|---|----|----|---|---|---|
| Course          | Course PO's PSO's |   |   |   | 5 |   |   |   |   |    |    |   |   |   |
| Outcomes        | 1                 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1 | 2 | 3 |
| CO1             | 3                 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1  | 1  | 0 | 0 | 0 |
| CO2             | 3                 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0  | 2  | 0 | 0 | 2 |
| CO3             | 0                 | 2 | 0 | 3 | 3 | 0 | 0 | 1 | 0 | 0  | 1  | 1 | 1 | 0 |
| CO4             | 0                 | 0 | 3 | 2 | 0 | 0 | 0 | 1 | 0 | 0  | 1  | 1 | 0 | 0 |

# Assessments: TeacherAssessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment                                                                             | Marks |  |  |  |  |
|----------------------------------------------------------------------------------------|-------|--|--|--|--|
| ISE 1                                                                                  | 10    |  |  |  |  |
| MSE                                                                                    | 30    |  |  |  |  |
| ISE 2                                                                                  | 10    |  |  |  |  |
| ESE                                                                                    | 50    |  |  |  |  |
| ISE1 and ISE2 are based on assignment/declared test/quiz/seminar/Group Discussions etc |       |  |  |  |  |
| MSE: Assessment is based on 50% of course content (Normally first three modules)<br>ESE: Assessment is based on100% course content with 60-70% weightage for course con<br>(normally last three modules) covered after MSE.                                                                   | tent           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Course Contents:                                                                                                                                                                                                                                                                              |                |
| UNIT1:<br>Introduction to Computational Fluid Dynamics:<br>General introduction: Historical background and spectrum of application. History and Philosophy<br>of computational fluid dynamics, CFD as a design and research tool, Applications of CFD in<br>engineering                       | 07 <b>Hrs.</b> |
| UNIT2:                                                                                                                                                                                                                                                                                        | 08 <b>Hrs.</b> |
| Fundamental Differential Equation:                                                                                                                                                                                                                                                            |                |
| Classification of Partial Differential Equations (PDEs): Elliptic, Parabolic, Hyperbolic.<br>Relevance to Fluid Flow Problems.                                                                                                                                                                |                |
| Boundary Conditions and Physical Interpretation of Boundary Conditions.<br><b>Fundamentals of Discretization:</b> Pre-processing, Solution, Post-processing, Finite Element<br>Method, Finite difference method, Well posed boundary value problem, Possible types of<br>boundary conditions. |                |
|                                                                                                                                                                                                                                                                                               | 07 <b>Hrs.</b> |
| UNIT3:Grid Generation                                                                                                                                                                                                                                                                         |                |
| Importance of Grid Generation in CFD.                                                                                                                                                                                                                                                         |                |
| • Structured vs. Unstructured Grids: Advantages and Disadvantages.                                                                                                                                                                                                                            |                |
| Grid Quality Metrics: Aspect Ratio, Skewness, Orthogonality.                                                                                                                                                                                                                                  |                |
| Grid Generation Techniques: Algebraic Grid Generation, Elliptic Grid Generation.                                                                                                                                                                                                              |                |
| Boundary Layer Meshing: Importance of Near-Wall Resolution.                                                                                                                                                                                                                                   |                |
| Adaptive Grid Refinement (Introduction).                                                                                                                                                                                                                                                      |                |
| Common Grid Formats.                                                                                                                                                                                                                                                                          |                |
| UNIT 4: Solution Methods for Algebraic Equations                                                                                                                                                                                                                                              | 07 <b>Hrs.</b> |
| • Discretization leading to system of algebraic equations.                                                                                                                                                                                                                                    |                |
| Direct Methods: Gaussian Elimination, LU Decomposition.                                                                                                                                                                                                                                       |                |
| • Iterative Methods: Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR).                                                                                                                                                                                                                  |                |
| Convergence Criteria.                                                                                                                                                                                                                                                                         |                |
| Choice of Solver: Factors Affecting Solver Selection.                                                                                                                                                                                                                                         |                |
| • Pressure-Velocity Coupling: SIMPLE, SIMPLER, SIMPLEC Algorithms.                                                                                                                                                                                                                            |                |
| • Solution of Transient Problems: Implicit and Explicit Methods. Stability Considerations.                                                                                                                                                                                                    |                |
| UNIT5. Turbulance Modeling                                                                                                                                                                                                                                                                    | 08 <b>Hr</b> e |
| Introduction to Turbulence: Characteristics of Turbulent Flow                                                                                                                                                                                                                                 | 00 111 3.      |
| <ul> <li>Revnolds_Averaged Navier_Stokes (RANS) Equations</li> </ul>                                                                                                                                                                                                                          |                |
| Turbulance Models:                                                                                                                                                                                                                                                                            |                |
| <ul> <li>Turbulence Models.</li> <li>Zero Equation Models. One Equation Medals and Two Equation Medals (b)</li> </ul>                                                                                                                                                                         |                |
| epsilon, k-omega).                                                                                                                                                                                                                                                                            |                |

|                                                                                                                    | r              |
|--------------------------------------------------------------------------------------------------------------------|----------------|
| Limitations of RANS Models.                                                                                        |                |
| Large Eddy Simulation (LES)                                                                                        |                |
| Direct Numerical Simulation (DNS)                                                                                  |                |
| UNIT6:                                                                                                             | 08 <b>Hrs.</b> |
| Introduction to CFD Software and Applications                                                                      |                |
| Overview of Commercial CFD Software Packages (e.g., ANSYS Fluent).                                                 |                |
| • Pre-processing: Geometry Creation, Mesh Generation using CFD software.                                           |                |
| • Setting up the Problem: Choosing appropriate solver, boundary conditions, material                               |                |
| properties.                                                                                                        |                |
| Running the Simulation: Monitoring convergence.                                                                    |                |
| • Post-processing: Visualization of Results (Contour Plots, Vector Plots, Streamlines).                            |                |
| • Validation and Verification: Comparison with Experimental Data or Analytical Solutions.                          |                |
| Applications of CFD:External Aerodynamics, Internal Flows (Flow in Pipes, Heat Exchangers),                        |                |
| Heat Transfer (Conduction, Convection, Radiation), Combustion.                                                     |                |
| Textbooks:                                                                                                         |                |
| 1. H. K.Versteeg & W.Malalasekera, An Introduction to Computational Fluid Dynamics, Longma Scientific & Technical. | an             |
| 2. John D. Anderson Jr., Computational Fluid Dynamics, McGraw Hill Book Company.                                   |                |
| 3. J. Blazek, Computational Fluid Dynamics: Principles and Applications, Esevier.                                  |                |
| 4. Introduction to Computational Fluid Dynamics: The Finite Volume Method by H. Versteeg and                       | IW.            |
| Malalasekera                                                                                                       |                |
|                                                                                                                    |                |
| Reference Books:                                                                                                   |                |
| 1. T.J.Chung, Computational Fluid Dynamics, Cambridge University Press.                                            |                |
| 2. J.H.FerzigerandM.Peric,ComputationalMethodsforFluidDynamics,Springer.                                           |                |
| 3. John C. Tannehill, Dale A. Anderson and Richard H. Pletcher, Computational Fluid Mech                           | ianics         |
| and rieat Transfer, Taylor & Francis.<br>4 User Manuals and Tutorials for the chosen CED software package          |                |
| 4. User Manuals and Tutorials for the chosen CFD software package.                                                 |                |

| Title o                                                       | f the Course: Business Communication and Value Science                                 | L        | Т             | Р       | Crea   | dit |  |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|---------------|---------|--------|-----|--|--|--|
| Course                                                        | <b>Course Code: UMEAE0604</b>                                                          |          |               |         |        |     |  |  |  |
| Course<br>2 Bas                                               | Course Pre-Requisite: 1. Awareness of common words used in daily verbal communication. |          |               |         |        |     |  |  |  |
| $\begin{array}{c} 2. \text{ Das} \\ 3 \text{ Aw} \end{array}$ | are need of sentence for mation and energy paragraph bunding a                         | listoni  | ung.<br>na eb | ille    |        |     |  |  |  |
| $\Delta \Delta w$                                             | reness of basic communication channels and active and passive                          | nd com   | ing sa<br>mun | icatio  | n      |     |  |  |  |
| 5. Basi                                                       | c idea of like skills and value system                                                 |          | mun           | icatio  | 11.    |     |  |  |  |
| Course                                                        | Description: Being a practice – oriented course, this cour                             | se focu  | ses           | on Pr   | actici | ing |  |  |  |
| variou                                                        | s skills of communication and Life Skills.                                             | 50 1000  | 505           |         | uccici |     |  |  |  |
| Course                                                        | e Objectives:                                                                          |          |               |         |        |     |  |  |  |
| 1.                                                            | To demonstrate the importance of various modes of communication                        | n and th | eir ar        | oplicat | ions i | n   |  |  |  |
|                                                               | business.                                                                              |          | 1             | 1       |        |     |  |  |  |
| 2.                                                            | To Improve modes of expression in written and oral communication                       | n.       |               |         |        |     |  |  |  |
| 3.                                                            | To understand what Life skills are and their importance in leading a                   | a happy  | life.         |         |        |     |  |  |  |
| 4.                                                            | To introduce them to key concepts of values, life skills.                              | 117      |               |         |        |     |  |  |  |
| Course                                                        | e Learning Outcomes:                                                                   |          |               |         |        |     |  |  |  |
|                                                               | 5                                                                                      |          |               |         |        |     |  |  |  |
| CO                                                            | After the completion of the course the student should be                               | Bloom    | 's Co         | gnitiv  | 'e     |     |  |  |  |
|                                                               | able to                                                                                | level    | De            | scripto | orc    |     |  |  |  |
|                                                               |                                                                                        |          | oi4           |         |        |     |  |  |  |
| <b>CO1</b>                                                    | To Understand the importance of (Written business                                      | Ι        | Un            | dersta  | nd     |     |  |  |  |
|                                                               | communication) Basic tenets of Business communication.                                 |          |               |         |        |     |  |  |  |
| CO2                                                           | To Apply the basic communication in different types of                                 | III      | Ap            | ply     |        |     |  |  |  |
|                                                               | business communication.                                                                |          |               |         |        |     |  |  |  |
| CO3                                                           | To Recognise the need for value system.                                                | Ι        | Un            | dersta  | nd     |     |  |  |  |
| CO4                                                           | To Recognise the need for life skills.                                                 | Ι        | Un            | dersta  | nd     |     |  |  |  |

# **CO-PO Mapping:**

|     |     | ppms | •   |     |     |     |     |     |     |      |      |      |      |      |
|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO  | PO1 | PO2  | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
| CO1 |     |      |     |     |     |     | 3   | 2   | 3   |      | 1    |      |      |      |
| CO2 |     |      |     |     |     |     | 3   | 2   | 3   |      | 1    |      |      |      |
| CO3 |     |      |     |     |     |     | 3   | 3   | 2   |      | 1    |      |      |      |
| CO4 |     |      |     |     |     |     | 3   | 3   | 2   |      |      |      |      |      |

| Assessments :                                  |                                                 |         |
|------------------------------------------------|-------------------------------------------------|---------|
| Teacher Assessment:                            |                                                 |         |
| Assessment                                     | Marks                                           |         |
| ISE                                            | 50                                              |         |
| ISE are based on practical performed/ Quiz/ Mi | ini-Project assigned/ Presentation/ Group Discu | ission/ |
| Internal oral etc.                             |                                                 |         |
| Course Contents:                               |                                                 |         |
| Practical No.: 1 Overview of business comm     | unication significance of business              | 2 Hrs.  |
| communication                                  |                                                 |         |

| Practical No. 2: Introduction to essentials of business communication.                                                                    | 2Hrs.  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------|
| a) Formal and informal communication                                                                                                      |        |
| b) Downward upward lateral and diagonal communication                                                                                     |        |
|                                                                                                                                           |        |
| Practical No.3: Basics to effective communication interactive and non interactive techniques of communication.                            | 2Hrs.  |
| Practical No.4: Effective Writing Guidelines for ideas writing, References,                                                               | 2Hrs.  |
| Bibliographical research tools, use of Library and interact for collection, classification and interpretation of data and transformation. |        |
| Practical No. 5: Business correspondence – Need and importance of business letters,                                                       | 2 Hrs. |
| office memorandum, office circulars, notices and orders.                                                                                  |        |
| Practical No.6: Technology for communication – effective IT communication tools,                                                          | 2Hrs.  |
| Conducting Self introduction.                                                                                                             |        |
| Practical No. 7: Spoken English – Effective Negotiation, elements, Process, general                                                       | 2Hrs.  |
| guidelines conducting and group discussion                                                                                                |        |
| Practical No. 8: Oral Presentation- Making a presentation                                                                                 | 2Hrs.  |
| - Content and organising features of a good presentation                                                                                  |        |
| - Delivering a presentation                                                                                                               |        |
| Practical No. 9: Understanding life Skills – Need for life skills and Values. Importance                                                  | 2Hrs.  |
| of critical life skills                                                                                                                   |        |
| Practical No. 10: Values – Sadachar.                                                                                                      | 2 Hrs. |
| Self confidence, achievement orientation dealing with ambiguity, team work                                                                |        |
| Practical No. 11: Self Exploration – SWOT Analysis and Goal setting                                                                       | 2 Hrs. |
| Practical No. 12:Realities of Facing life – Stress Management, Working with rhythm                                                        | 2 Hrs. |
| and balance, Embarking diversity, Motivation – Self Motivation                                                                            |        |
| Practical No. 13: Presentation on                                                                                                         | 2 Hrs. |
| Case study : Business Leaders                                                                                                             |        |
| Social Reformers                                                                                                                          |        |
|                                                                                                                                           |        |

#### **Textbooks /References:**

- 1. Effective Technical Communication by Rizvi and Ashraf, Mc Graw Hill, India 2017
- 2. Business Communication by K.K. Siaha, Galgetia publishing company India
- 3. Business Correspondence and Report Writing by R.C. Sharma and Krishna Mohan Mc Graw Hill, India
- 4. Business Communication by Asha Kaur, Prentice Hall of India
- 5. Managerial Communication by P.D. Chaturvedi and Mukesh Chaturvedi, Pearson Publication, India
- 6. "The Professional", Subroto Bagchi, 1st edition, Penguin Publishers
- 7. Business Communication: Building Critical Skills by Locker, Kitty O., and Stephen Kyo Kaczmarek Mc Graw Hill, India
- 8. Soft Skills by Dr. Alex, Chand Publications India
- 9. Seven Habits of highly effective people by Stefan convey
- 10. Emotional Intelligence by Dianel Goleman, Harvard Business Review Press.
- 11. Law of Success by Napoleon Hill
- 12. Think and Grow Rich by Napoleon Hill
- 13. How to Stop Worrying and Start Living by Dale Carnegie
- 14. Critical Thinking by Bruce Walker
- 15. Focus the hidden drives of Excellence by Dianel Goleman

#### **Experiment wise Measurable students Learning Outcomes:**

- 1. Students should be able to Understand Basic Communication skill used in industry and Importance of Life science.
- 2. Students will gain knowledge of the different Communication modes which are commonly employed in the industry and will be Prepare for future leaders
- 3. Upon completion of this laboratory course students will be able to communicate effectively, with different modes of communication.
- 4. Student will be able to Improve decision-making, Enhance personal growth, Better relationships, implement more ethical policies

| Title of                                                                               | fthe                                      | Cour         | se: Po               | ower    | Plan   | t Eng   | ginee    | ring l  | Lab      |          | L      | Т        | P      |       | Credit     |   |
|----------------------------------------------------------------------------------------|-------------------------------------------|--------------|----------------------|---------|--------|---------|----------|---------|----------|----------|--------|----------|--------|-------|------------|---|
| Course Code:UMEPC0631 0                                                                |                                           |              |                      |         |        |         | 0        | 0       | 2        |          | 1      |          |        |       |            |   |
| Course                                                                                 | Pre-H                                     | Requi        | site: E              | Basic N | Mecha  | nical   | Engir    | neerin  | g ,App   | lied Th  | ermod  | lynamio  | c, Hea | at Ma | ass        |   |
| Transfer                                                                               | Transfer.                                 |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| Course                                                                                 | Desci<br>irse di                          | riptio       | <b>n:</b><br>vith de | monst   | ratio  | n of di | fferer   | nt engi | ine con  | nonen    | ts and | system   | is and | cond  | luct of    |   |
| various                                                                                | exper                                     | iment        | s on e               | ngine   | perfo  | rmano   | e in to  | erms o  | of powe  | er. ener | gv uti | lization | and e  | xhau  | ist        |   |
| emission                                                                               | ns, its                                   | relati       | on to i              | nterna  | al pro | cesses  | s like ( | combi   | istion a | ind gas  | excha  | inge at  | varyir | ng en | gine       |   |
| operatin                                                                               | ig con                                    | dition       | s.                   |         | -      |         |          |         |          | -        |        | -        |        | _     | -          |   |
| Course                                                                                 | e Obj                                     | ectiv        | es:                  |         |        |         |          |         |          |          |        |          |        |       |            |   |
| 1. To de                                                                               | mons                                      | trate t      | he bas               | sic eng | gine c | ompo    | nents    | and sy  | ystems.  |          |        |          |        |       |            |   |
| 2. To tra                                                                              | ain the                                   | e stude      | ents to              | meas    | ure di | itterei | nt eng   | ine pe  | rtorma   | nces ar  | nd app | ly the k | nowle  | edge  | to solve   |   |
| real me                                                                                | probl                                     | ems.         |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| Course                                                                                 | e Lea                                     | rning        | Out                  | come    | s:     |         |          |         |          |          |        |          |        |       |            |   |
| CO                                                                                     | Afte                                      | er the       | e com                | pletio  | on of  | the c   | ours     | e the   | stude    | nt shou  | uld b  | e Bl     | oom'   | s Co  | gnitive    | 1 |
|                                                                                        | able                                      | e to         |                      |         |        |         |          |         |          |          |        | lev      | vel 1  | Desc  | criptor    |   |
| CO1                                                                                    | Expl                                      | lain v       | arious               | syste   | m use  | ed in p | ower     | plants  | 5.       |          |        | II       | -      | Unde  | erstanding |   |
| CO2                                                                                    | Ana                                       | lyze p       | perform              | nance   | e para | meter   | s of I   | . C. E  | ngine.   |          |        | IV       | IV A   |       | yzing      |   |
| CO3                                                                                    | Mea                                       | sure t       | he per               | forma   | nce p  | arame   | eters o  | of I. C | . Engir  | ne.      |        | V        | -      | Evalı | uating     |   |
|                                                                                        |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
|                                                                                        |                                           | •            |                      |         |        |         |          |         |          |          |        |          |        |       |            | _ |
|                                                                                        | PO1                                       | PDINS<br>PO2 | PO3                  | PO4     | PO5    | PO6     | PO7      | PO8     | PO9      | PO10     | PO11   | PSO1     | PSO2   | PS    | 03         |   |
| C01                                                                                    | 2                                         |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| CO2                                                                                    | 2                                         |              |                      |         |        |         |          |         |          |          |        | 2        |        |       |            |   |
| CO3                                                                                    | 3                                         | 3            |                      |         | 2      |         |          |         |          |          |        | 2        |        |       |            |   |
|                                                                                        |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
|                                                                                        |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
|                                                                                        |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
|                                                                                        |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| Assessi                                                                                | ment                                      | s :          |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| Teache                                                                                 | er Ass                                    | sessm        | ent:                 |         |        |         |          |         |          |          |        |          |        |       |            |   |
| One co                                                                                 | mpon                                      | ent o        | f In S               | Semes   | ster E | valua   | ation    | (ISE)   | and or   | ne End   | Sem    | ester E  | xami   | natic | on (ESE)   |   |
| having                                                                                 | having 50%, and 50% weights respectively. |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| Asses                                                                                  | Assessment Marks                          |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| ISE                                                                                    | ISE 25                                    |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| ESE                                                                                    | ESE 25                                    |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| Discuss                                                                                | Discussion/ Internal oral etc.            |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |
| ESE: A                                                                                 | ssess                                     | ment         | is bas               | sed of  | 1 oral | exar    | nınatı   | on      |          |          |        |          |        |       |            |   |
|                                                                                        |                                           |              |                      |         |        |         |          |         |          |          |        |          |        |       |            |   |

| Course Contents:                                                                   |               |      |
|------------------------------------------------------------------------------------|---------------|------|
| Experiment No. 1:                                                                  | 2 Hrs.        | CO1  |
| Study and demonstration of different types of power plants.                        |               |      |
|                                                                                    |               |      |
| Experiment No. 2                                                                   | 2 Hrs         | CO1  |
| Study and Demonstration of components of I. C. Engine.                             |               |      |
|                                                                                    |               |      |
| Experiment No. 3:                                                                  | 2 Hrs.        | CO1  |
| Study and Demonstration of Engine systems: Air intake, Exhaust, Cooling,           |               |      |
| Lubrication systems.                                                               |               |      |
|                                                                                    |               |      |
| Experiment No. 4:                                                                  | 2 <b>Hrs.</b> | CO1  |
| Study and Demonstration of fuel supply system in S.I. and C.I. engine.             |               |      |
|                                                                                    |               | ~~ 1 |
| Experiment No. 5:                                                                  | 2 <b>Hrs.</b> | COI  |
| Study and Demonstration of Ignition system and starting system                     |               |      |
| Fyneriment No. 6                                                                   | 2 Hrs         | CO3  |
| Heat Balance sheet on Petrol/Diesel engine                                         | 2 1113.       | 005  |
|                                                                                    |               |      |
| Experiment No. 7:                                                                  | 2 Hrs.        | CO3  |
| Morse test on Petrol/Diesel engine                                                 |               |      |
|                                                                                    |               |      |
| Experiment No. 8:                                                                  | 2 Hrs.        | CO3  |
| Variable speed test on Petrol/Diesel engine                                        |               |      |
| Experiment No. 9                                                                   | 2 Hrs         | CO2  |
| Test on computerized Variable compression Ratio Engine                             | 2 1115.       |      |
|                                                                                    |               |      |
| Experiment No. 10:                                                                 | 2 <b>Hrs.</b> | COI  |
| Industrial visit to engine manufacturing company                                   |               |      |
| Text books:                                                                        | -             |      |
| 1. A Course in Power Plant Engineering, S.C. Arora and S. Domkundwar, Dhar         | pat Rai, 1988 |      |
| 2. "Internal Combustion Engines", V. Ganesan, Tata McGraw Hill Publication.        | 1 )           |      |
| 3. "Internal Combustion Engines" Mathur and Sharma, Dhanpat Rai Publication        | n , Delhi.    |      |
| 4. A Text Book of Power Plant Engineering, R. K. Rajput, Laxmi Publications, New D | elhi.         |      |
| Reference Books:                                                                   |               |      |
| 1."Internal Combustion Engines", J. B. Heywood, Tata McGraw Hill Publication       | n.            |      |
| 2. "Internal Combustion Engines", Maleev, CBS Publication and Distributors.        |               |      |
| 3."Internal Combustion Engines", Gills and Smith, Oxford and IBH Publishing        | Company.      |      |
| 4. "Internal Combustion Engines Fundamentals", E. F. Obert, Harper and Row         | Publication,  |      |
| New York.                                                                          |               |      |
| 5. Renewable Energy Resources, John Twidell & Anthony D. Weir 2nd Edition          | n. Tavlor &   |      |
| Francis 2006                                                                       | -,,,          |      |
| A Derver Direct Engineering DKNes 2 (Edition Tete McCore Will Edited) 2000         |               |      |
| o. Power Plant Engineering, P.K.Nag, 2nd Edition, Tata McGraw-Hill Education, 2002 |               |      |

| Tit | tle of th                  | ne Cour         | se: F   | INIT     | E ELF    | EMEN     | T ANA    | LYS              | IS     |        | Ι     | 7 ]      | Γ      | Р         | Cred      | lit   |
|-----|----------------------------|-----------------|---------|----------|----------|----------|----------|------------------|--------|--------|-------|----------|--------|-----------|-----------|-------|
| LA  | LAB.Course Code: UMEPC0632 |                 |         |          |          |          |          |                  | -      | -      | 2     | 1        |        |           |           |       |
| Co  | Course Pre -Requisite:     |                 |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
|     | 1. Stiffness of spring     |                 |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
|     | 2. M                       | aterial p       | ropert  | ies      |          |          |          |                  |        |        |       |          |        |           |           |       |
|     | 3. Cr                      | eation o        | f node  | es, e le | ements   |          |          |                  |        |        |       |          |        |           |           |       |
|     | 4. Gl                      | obalstif        | fness   | matri    | Х        |          |          |                  |        |        |       |          |        |           |           |       |
| Co  | ourse D                    | escripti        | on:     |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| Th  | e course                   | e aims at       | solvin  | g the    | structur | al and   | thermal  | l proble         | ems by | y FEA  | by ha | and calc | ulatio | ons as we | ell as by |       |
| usi | ng Soft                    | vare.           |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| Co  | ourse C                    | bjectiv         | es:     |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| 1.  | To prov                    | ide the st      | udents  | s the n  | nethodo  | ology o  | f solvin | g FEA            | probl  | ems by | /usin | g hand   | Calc   | ulations  |           |       |
| 2.  | To train                   | students        | s in us | ing th   | e FEA s  | softwar  | e for so | olving 1         | FEA p  | roblen | ıs    |          |        |           |           |       |
|     |                            |                 |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| Co  | ourse I                    | <i>e</i> arning | ; Out   | come     | s :      |          |          |                  |        |        |       |          |        |           |           |       |
| (   | CO                         | After t         | he co   | mple     | tion of  | f the co | ourse t  | he stu           | ıdent  | shoul  | d     | Bloom    | n's C  | ognitive  |           |       |
|     |                            | beable          | to      | -        |          |          |          |                  |        |        |       | level    |        | Descriț   | otor      | 1     |
|     | CO1                        | Underst         | and st  | ructu    | al and   | therma   | l proble | ms by            | hand   |        |       | 2        |        | Unders    | tand      |       |
|     |                            | calculat        | ions a  | s well   | as by ı  | using so | oftware  | es               |        |        |       |          |        |           |           |       |
|     | CO2                        | Analyze         | e struc | tural a  | and the  | rmal pr  | oblems   | using            | FEA s  | oftwa  | e     | 3        |        | Apply     |           |       |
|     |                            |                 |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
|     |                            |                 |         |          |          | (        | CO-PO    | Map              | ping:  |        |       |          |        |           |           |       |
| ſ   |                            |                 |         |          |          | UM -     | FEA: C   | C <b>O - P</b> ( | ) Map  | ping   |       |          |        |           |           | ]     |
|     | Cours                      | e               |         |          |          |          | PO's     |                  |        |        |       |          |        | PSO'      | s         | 1     |
|     | Outcon                     | ne 1            | 2       | 3        | 4        | 5        | 6        | 7                | 8      | 9      | 10    | 11       | 1      | 2         | 3         |       |
| -   | <b>S</b>                   | 3               |         |          |          |          |          |                  |        |        |       |          | 2      |           |           | -     |
| -   | CO1                        | 2               | 2       |          | 2        |          |          |                  |        |        |       |          | 2      | 2         | 2         | -     |
| Í L | 002                        | Z               | 2       |          | 3        |          |          |                  |        |        |       |          |        | 2         | 2         |       |
|     |                            |                 |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
|     |                            |                 |         |          |          |          | 1:low, 2 | 2:med            | ium,3  | :high  |       |          |        |           |           |       |
| 1   |                            |                 |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| As  | sessme                     | nts :           |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| Te  | acher A                    | ssessme         | nt:     |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| On  | e comp                     | onent of        | In Sen  | nester   | Evalua   | tion (IS | SE)      |                  |        |        |       |          |        |           |           |       |
| As  | sessmei                    | nt Ma           | rks     |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| ISI | E                          | 25              |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| ISI | E are ba                   | sed on p        | ractic  | al per   | formed   | / Quiz/  | Mini-F   | Project          | assig  | ned/ P | resen | tation/  | Grou   | p Discus  | sion/Inte | ernal |
| ora | al etc                     | v               |         |          |          |          |          |                  |        |        |       |          |        |           |           |       |
| Co  | ourse C                    | contents        | :       |          |          |          |          |                  |        |        |       |          |        |           |           |       |

Course Contents:

| Unit 1:<br>1-D Element Problems –Linear Static Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Hrs.          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Unit 2:<br>2-D Element Problems – Linear Static Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Hrs.          |
| Unit 3:<br>3-D Element Problems – Linear Static Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2Hrs            |
| Unit 4:<br>Non-Linear Analysis of 1-D Element Problems Like Beams, Bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2Hrs            |
| Unit 5:<br>1-D Element Problems-Steady state And Transient Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2Hrs            |
| Unit 6:<br>2-D Element Problems of Homogeneous and Composite Slap in Steady State and<br>Transient Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2Hrs            |
| Unit 7:<br>3-D Element Problems Steady State Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2Hrs            |
| <b>Unit 8:</b><br>Project-Creating or Importing and Map Meshing of 3-D component /Assembly of practical application and FEA Analysis of Same component /Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2Hrs            |
| <ul> <li>Note-</li> <li>Minimum two problems shall be solved with hand calculations.</li> <li>Term work shall be assessed on the basis of completion of above assignments and submission of reports.</li> <li>At least one programming assignment shall be completed based on Finite Element Analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         |                 |
| <ol> <li>Text books:         <ol> <li>Finite Element Analysis using Ansys 11.0 by Paleti<br/>Shrinivas, Krisha Chaitnay Sambana, Rajesh Kuma<br/>Datti.</li> <li>Finite Element Analysis Theory and Applications with ANSYS by Saeed N</li> <li>Engineering Analysis with ANSYS Software by Y. Nakasone and S. Yoshin</li> <li>The finite element method And applications in Engineering using<br/>Ansys® byErdogan Madenci, Ibrahim Guven</li> <li>Practical Finite Element Analysis by NitinGokhale of M/S Finite to Infinite.</li> <li>Reference Manual of Hypermesh Software</li> <li>Online Tutorial HyperMesh Software.</li> <li>Tutorial of Ansys Software.</li> </ol> </li> </ol> | Ioaveni<br>moto |

| Title of the Course: Mechatronics Laboratory | L | Т | P | Credit |
|----------------------------------------------|---|---|---|--------|
| Course Code: UMEPC0633                       | - | - | 2 | 1      |

**Course Pre-Requisite:** Knowledge of basic Electronics and Electrical Engineering, Sensor and Actuator lab.

**Course Description:** Studying the mechatronics course is of importance due to the global demand and developments in Mechatronic systems and automated manufacturing planning and controlling activities etc. The mechanical systems are becoming smart and for designing and developing such smart systems students of mechanical engineering must understand basic elements of smart systems such as sensors, signal conditioning devices, microcontrollers, digital logic and programs for automating the processes.

#### **Course Learning Objectives:**

**CLO1:**To provide graduates of mechanical engineering with fundamental skills in the field of mechatronics for advanced graduate studies in the area of Mechatronics, Manufacturing engineering, and related field

CLO2: To stimulate students for developing simple mechatronics applications.

**CLO3:**To introduce graduates of mechanical engineering with working principles and functioning of basic components, inputs, outputs and programming languages used in mechatronic systems.

| Course Learning Outcomes: |                                                                                          |       |              |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------|-------|--------------|--|--|--|--|
| CO                        | After successful completion of the course the student should                             | Bloom | 's Cognitive |  |  |  |  |
|                           | beable to                                                                                | level | Descriptor   |  |  |  |  |
| CO1                       | Make use of Microcontrollers to demonstrate applications of mechatronics systems.        | III   | Application  |  |  |  |  |
| CO2                       | <b>Solve</b> scenarios of automating the processes by <b>performing</b> PLC programming. | III   | Application  |  |  |  |  |
| CO3                       | <b>Develop</b> a small application of the Mechatronic system.                            | VI    | Create       |  |  |  |  |

#### **CO-PO,PSO Mapping:**

|     | ,   | Trup | Pms. |     |     |     |     |     |     |     |      |      |      |      |
|-----|-----|------|------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| СО  | PO1 | PO2  | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | P10 | PO11 | PSO1 | PSO2 | PSO3 |
| CO1 | 3   | 2    | 1    |     | 1   |     |     |     |     |     | 1    | 1    |      | 1    |
| CO2 | 2   | 2    | 2    |     | 2   |     |     |     |     |     | 1    | 3    | 2    | 1    |
| CO3 | 2   | 3    | 3    | 1   | 2   |     | 1   | 3   | 2   | 2   | 1    | 3    | 3    | 2    |

1:Low 2:Medium 3: High

#### Assessments:

#### **Teacher Assessment:**

One component of In Semester Evaluation (ISE)

| Components | Marks |
|------------|-------|
| ISE        | 25    |
| ESE(POE)   | 25    |

Hours

02

02

02

02

ISE is based on laboratory performance and journals. Minimum 08 experiments to be performed and included in the journal. ESE is based on a practical examination followed by an oral examination.

Course Contents: Experiment No.1 -- Study Invering OPAMP Experiment No.2 -- Study Non-Invering OPAMP

**Experiment No.3:** --- Addition and Subtraction of 8-bit numbers using microcontroller 8051

Experiment No. 4: --- LED interfacing with Arduino

| Experiment No. 5: Digital Sensor interfacing with Arduino                                                                                                                                   | 02 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Experiment No. 6: Analogue Devices interfacing with Arduino.                                                                                                                                | 02 |  |  |  |  |
| <b>Experiment No. 7:</b> PLC programming for demonstrating applications of Logic gates.                                                                                                     | 02 |  |  |  |  |
| Experiment No. 8: Applications based on timers using PLC ladder programming.                                                                                                                | 02 |  |  |  |  |
| Experiment No. 9: Applications based on counters using PLC ladder programming.                                                                                                              | 02 |  |  |  |  |
| Experiment No. 10: Demonstration of Piece counting using rotary indexing mechanism                                                                                                          |    |  |  |  |  |
| Experiment No. 11:Demonstration of temperature and flow sensor                                                                                                                              | 02 |  |  |  |  |
| <b>Experiment No. 12:</b> Fabrication of Simple Mechatronics working project by a group of 4/5 students using hardware like sensors, signal conditioning, actuators, and suitable software. |    |  |  |  |  |
|                                                                                                                                                                                             |    |  |  |  |  |
| Textbooks:                                                                                                                                                                                  |    |  |  |  |  |
| 1. "Mechatronics", W. Bolton, Pearson Education, 4th Edition,                                                                                                                               |    |  |  |  |  |
| 2. "Mechatronics", Mahalik, TATA McGraw Hill, (2006) Reprint,                                                                                                                               |    |  |  |  |  |
| 3. "Microprocessor 8085", Gaokar Prentice Hall of India, 5th Edition.                                                                                                                       |    |  |  |  |  |
| 4. "The 8051 Microcontroller -A System Approach", by Muhammad A. Mazidi, 1st Ed., PH                                                                                                        |    |  |  |  |  |
| 5. "Programmable Logical Controller", Hackworth, Pearson Education, (2008).                                                                                                                 |    |  |  |  |  |
| 6. "Programmable Logical Controller", Reis Webb, Prentice Hall of India 5th Edition.                                                                                                        |    |  |  |  |  |
| Reference Books:                                                                                                                                                                            |    |  |  |  |  |
| 1. "Mechatronics", AppuKuttam, Oxford Publications, 1stEdition.                                                                                                                             |    |  |  |  |  |
| 2. "Automated Manufacturing Systems", S. Brain Morris, Tata McGrawHill.                                                                                                                     |    |  |  |  |  |
| 3. "Mechatronics and Microprocessor", Ramchandran, Willey India,(2009).                                                                                                                     |    |  |  |  |  |
| 4. "Mechatronics: Integrated Mechanical Electronic System", Ramchandran, Willey India, 1 <sup>s</sup> Edition.                                                                              | st |  |  |  |  |
| 5 "Drogrammable Legisel Controller" Conv. Dynning Congage Legening 2ndEdition a                                                                                                             |    |  |  |  |  |

5. "Programmable Logical Controller", Gary Dunning Cengage Learning, 3rdEdition.s

| Title of the Course: CAD/CAM/CAE Laboratory | L | Т | Р | Credit |
|---------------------------------------------|---|---|---|--------|
| Course Code: UMEIL1071                      | 0 | 0 | 2 | 1      |

**Course Pre-Requisite:** Knowledge of Machine drawing, isometric & orthographic projection and CNC machines is essential.

**Course Description:** Under this course the student will be introduced to the principles of parametric design using computer aided design software. Students will construct 3 models and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.

#### **Course Objectives:**

- 1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.
- 2. To Construct surface models of parts using CAD software
- 3. To build 3D assemblies using CAD software taking into consideration appropriate assembly approach
- 4. To Build 2D projections from 3D models and assemblies
- 5. To Develop the CNC part program by using manual programming and CAM software.

#### **Course Learning Outcomes:**

| CO         | After the completion of the course the student should be                                               | Bloom's Cognitive |                       |  |
|------------|--------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--|
|            | able to                                                                                                | level             | Descriptor            |  |
| CO1        | Construct 3D solid and surface Models of parts using CAD software and measure its physical properties. | 3                 | Construct             |  |
| CO2        | Build 3D assemblies with appropriate assembly approach and 2D projections using CAD software.          | 3                 | Build                 |  |
| <b>CO3</b> | Develop the CNC manual part program for 2D Profile and understand concepts of CAE.                     | 3,2               | Develop<br>Understand |  |

# **CO-PO Mapping:**

| CO  | CO1 | CO2 | CO3 | CO4 | CO5 | CO6 | CO7 | CO8 | CO9 | CO10 | CO11 | PS01 | PS02 | PS03 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   |     | 2   | 1   | 2   |     |     |     |     |      | 1    | 2    |      |      |
| CO2 | 1   |     | 1   | 1   | 1   |     |     |     |     |      | 1    | 2    |      |      |
| CO3 | 1   |     | 1   |     | 3   |     |     |     |     |      | 1    | 2    |      |      |

#### Assessments :

| Teacher | Assessment: |
|---------|-------------|
|---------|-------------|

| Assessment | Marks |
|------------|-------|
| ISE        | 25    |

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

#### **Course Contents:**

**1: Introduction to CAD:** Need for implementing CAD, Application and benefits 2 **Hrs.** of CAD, Hardware Requirements, Different Software packages used for 3D

| Modeling.                                                                                                            |               |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| 2: Sketching & Solid Modeling:                                                                                       |               |  |  |  |  |
| 2D sketching of elements like line, circle, arc, spline etc. Dimensioning these                                      |               |  |  |  |  |
| elements, Geometrical constraints                                                                                    |               |  |  |  |  |
| Solid Modeling: Concept of Feature based and parametric modeling Basic and                                           |               |  |  |  |  |
| advanced modeling features. Import and export of 3D solid models between two                                         |               |  |  |  |  |
| different software packages. Physical properties like volume, surface area, center                                   |               |  |  |  |  |
| of gravity etc of solid model.                                                                                       |               |  |  |  |  |
| 3: Basic Surface Modeling: Concept of surface modeling. Basic modeling                                               | 8 Hrs         |  |  |  |  |
| features.                                                                                                            |               |  |  |  |  |
| Assembly Modeling: Concept of Bottom up and top down approach. Building                                              |               |  |  |  |  |
| two composite assemblies of components (consisting at least five components)                                         |               |  |  |  |  |
| along with all relevant details. Exploded Views using assembly features in any                                       |               |  |  |  |  |
| suitable 3D modeling software                                                                                        |               |  |  |  |  |
| 4: Generation of 2D Drawings:                                                                                        | 2 Hrs         |  |  |  |  |
| Generation of Orthographic views of individual components required for shop                                          | 2 111 5.      |  |  |  |  |
| floor [working drawings] from 3D model which will include all relevant views like                                    |               |  |  |  |  |
| front side top bottom views sectional views dimensioning dimensional and                                             |               |  |  |  |  |
| accomparison to be a constant of title block in sheet. Orthographic views                                            |               |  |  |  |  |
| geometrical tolerances etc. Generation of title block in sheet. Orthographic views                                   |               |  |  |  |  |
| of assembly drawings, generation of Bill of Materials (BOM). Plotting of                                             |               |  |  |  |  |
| drawings.                                                                                                            | 4 11          |  |  |  |  |
| 5. Computer Alded Manufacturing:                                                                                     | 4 <b>Hrs.</b> |  |  |  |  |
| a) Part Programming: Introduction to manual part programming, use of G and                                           |               |  |  |  |  |
| M codes to generate manual part program, Introduction to data exchange formats,                                      |               |  |  |  |  |
| Demonstration of integration of CAD/CAM software to generate tool path using                                         |               |  |  |  |  |
| suitable software.                                                                                                   |               |  |  |  |  |
| b) Introduction to CAE, Applications.                                                                                |               |  |  |  |  |
|                                                                                                                      |               |  |  |  |  |
| Text Books:                                                                                                          |               |  |  |  |  |
| 1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Ed                                        | ition.        |  |  |  |  |
| 2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.                                               |               |  |  |  |  |
| 3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.                                            |               |  |  |  |  |
| Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New                                            | / Age         |  |  |  |  |
| International (P) Ltd, New Delhi,2000.                                                                               |               |  |  |  |  |
|                                                                                                                      |               |  |  |  |  |
| Reference books:                                                                                                     |               |  |  |  |  |
| 1. Various 3D modeling Software Manuals.                                                                             |               |  |  |  |  |
| 2. CNC Programming manual.                                                                                           |               |  |  |  |  |
| 3. "Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications                                            | 7)            |  |  |  |  |
| 4. "Wastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (200                                 | <i>)</i> /).  |  |  |  |  |
| 5. "Machine Drawing", N. Siddheshwar, P. Kannaiah, V V S Sastry, Tata McGraw Hill                                    |               |  |  |  |  |
| FUDICATIONS, 200 Edition.<br>6 "CAM/CAM - Theory and Practice" Ibrahim Zeid, P. Siyasubramaniam, Tata McGrayy Hill ( |               |  |  |  |  |
| Fdition                                                                                                              | 1111,211u     |  |  |  |  |
| 7. "CAD/CAM – Concepts and applications". Chennakesava R. Alavala – Prentice Hall of                                 | India         |  |  |  |  |
| . Criziorani Concepto una approvitono, enemiareo ava reinavata i reinice rian or                                     |               |  |  |  |  |
|                                                                                                                      |               |  |  |  |  |

| Class: T                                                                                                   | Y. B. Tech Mechanical Engineering                                                                        |          | L        | Т        | Р              | Credit    | ts       |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|----------|----------|----------------|-----------|----------|--|
| Title of                                                                                                   | the Course: Co -Curricular Activities-III                                                                |          |          |          | 02 hours       |           | 11       |  |
| Course                                                                                                     | Code.: UMECC0634                                                                                         |          |          |          | per week       | ,         | )1       |  |
| Course                                                                                                     | Course Pre-Requisite:                                                                                    |          |          |          |                |           |          |  |
| None: '                                                                                                    | None: This course is open to all second-year engineering students interested in enhancing their personal |          |          |          |                |           |          |  |
| and pro                                                                                                    | fessional development through co-curricular activi                                                       | ties.    |          |          |                |           |          |  |
| Course                                                                                                     | Description:                                                                                             |          |          |          |                |           |          |  |
| Co-Cur                                                                                                     | ricular activities are an integral part of curricului                                                    | m whi    | ch pro   | vides e  | educational    | activitie | s to the |  |
| student                                                                                                    | s and thereby help in broadening their experiences                                                       | s. Co-C  | Curricu  | lar act  | ivities can b  | e define  | d as the |  |
| activitie                                                                                                  | es that enhance and enrich the regular curric                                                            | ulum     | during   | the 1    | normal coll    | lege hou  | urs. All |  |
| CoCurr                                                                                                     | icular activities are organized with specific purpos                                                     | se whic  | ch may   | / accor  | ding to the    | nature a  | nd form  |  |
| of activ                                                                                                   | rities. This course introduces students to a variety                                                     | of co    | -curric  | ular ac  | tivities aim   | ed at en  | hancing  |  |
| their pr                                                                                                   | ofessional and personal development within the                                                           | field c  | ot eng   | ineerin  | g and techn    | lology.   | Through  |  |
| practica                                                                                                   | al projects, competitions, workshops, and con                                                            | nmunit   | y eng    | ageme    | nt, student    | s Will    | develop  |  |
| teamwo                                                                                                     | ork, leadership, communication, and technical skills                                                     | s essen  | 11111 10 | r succe  | ss in their ca | areers.   |          |  |
|                                                                                                            | Learning Objectives (CLOS):                                                                              | 1 • 1    | 1        | 1 •      | 1 · 1 ·11      |           |          |  |
| 1. 10<br>2 T                                                                                               | encourage students to showcase their intellectual a                                                      | ind ind  | epende   | ent thir | iking skills.  |           |          |  |
| 2. 10                                                                                                      | imbibe a sense of confidence and managerial capa                                                         | bilities | amon     | g stude  | ents.          |           |          |  |
| 3. To                                                                                                      | promote the ability to work in team, organize and a                                                      | analyse  | e avail  | able re  | sources.       |           |          |  |
| 4. To                                                                                                      | build responsiveness among students about the soc                                                        | cial and | d cultu  | ral resp | oonsibilities  | •         |          |  |
| Course                                                                                                     | e Outcomes (COs):                                                                                        |          |          |          |                |           |          |  |
| At the                                                                                                     | end of the course students will be able to:                                                              |          |          |          |                |           |          |  |
| CO                                                                                                         | After the completion of this course the student wi                                                       | ill be a | ble to   |          |                | Blo       | om's     |  |
|                                                                                                            |                                                                                                          |          |          |          |                | Cog       | nitive   |  |
|                                                                                                            |                                                                                                          |          |          |          |                | Level     | Descri   |  |
|                                                                                                            |                                                                                                          |          |          |          |                |           | ptor     |  |
| CO1:                                                                                                       | Demonstrate the ability to critically analyse info                                                       | rmatio   | n and    | apply    |                | II        | Unders   |  |
|                                                                                                            | independent judgment in decision-making within                                                           | the co   | ntext o  | of the a | ctivity.       |           | tandin   |  |
|                                                                                                            |                                                                                                          |          |          |          |                |           | g        |  |
| CO2:                                                                                                       | Apply principles of management and organization                                                          | nal ski  | lls to p | olan, co | oordinate,     | III       | Applyi   |  |
|                                                                                                            | and execute tasks related to the co-curricular activity.                                                 |          |          |          |                |           | ng       |  |
| CO3:                                                                                                       | Collaborate effectively with peers to achieve cor                                                        | nmon     | goals a  | and obj  | ectives        | III       | Applyi   |  |
|                                                                                                            | within the co-curricular activity.                                                                       |          |          |          |                |           | ng       |  |
| CO4:                                                                                                       | <b>Reflect</b> on their roles and responsibilities as mem                                                | bers of  | f a div  | erse co  | mmunity,       | IV        | Analyz   |  |
|                                                                                                            | fostering empathy and inclusivity.                                                                       |          |          |          |                |           | ing      |  |
|                                                                                                            |                                                                                                          |          |          |          |                |           |          |  |
| Assessi                                                                                                    | ments:                                                                                                   |          |          |          |                |           |          |  |
|                                                                                                            | Assessment                                                                                               |          | Weig     | htage    | (Marks)        |           |          |  |
|                                                                                                            | ISE                                                                                                      |          |          | 50       |                |           |          |  |
| ISE: Assessment is based on the student's participation in various Co-Curricular Activities and Guidelines |                                                                                                          |          |          |          |                |           |          |  |
| given in                                                                                                   | n "Rules for Assigning Activity Points: Activity – H                                                     | Event (  | Grade I  | Point S  | cheme" Pol     | icy Docu  | iment.   |  |
|                                                                                                            |                                                                                                          |          |          |          |                |           |          |  |

# **Course Guidelines:**

- 2. Students are entitled to gain academic knowledge in this fast-paced environment, but it is also necessary for them to develop their personalities in both internal and external situations.
- 3. Co-curricular activities help students grow and develop their personalities. These activities contribute to a student's total personality development.
- 4. Not every student is intellectually inclined. Similarly, not all pupils are interested in co-curricular activities. Therefore, there is a need to provide a solid balance of co-curricular and extra-curricular activities in order to achieve the course learning objectives.
- 5. It primarily refers to intellectual, physical, emotional, and social growth that can be attained by a careful mix of academic, co-curricular, and extra-curricular activities.
- 6. So, keeping the course learning objectives the "Rules for Assigning Activity Points: Activity Event Grade Point Scheme" Policy Document is proposed.
- 6. Student participation is assessed and reflected in the final activity performance report in order to get most students involved in extra-curricular activities (Group A) and co-curricular activities (Group B) as shown in Table 1 in the Policy Document.
- 7. All undergraduate students must choose at least ONE activity/event from each group i.e. (Group A and B).
- 8. Students shall choose one activity/ event from Group A and One from Group B that take place oncampus or off-campus.
- 9. Freedom shall be given to the students to take part in more than one activity under the group.
- 10. Students are expected to actively participate in activities, participate in contests, and earn grade points.
- 11. One student in each group must earn up to 50 grades in one semester so that they can achieve up to 100 grades in one year.
- 12. Grades for each semester are awarded based on the points achieved by the student, as shown in Table 2 in the Policy Document.

| Sr. No. | Initiatives           | Criteria, Activities and Assignments                              |
|---------|-----------------------|-------------------------------------------------------------------|
| 1       | Introduction to Co-   | Orientation, Induction, Course Overview                           |
|         | Curricular Activities |                                                                   |
| 2       | National Initiatives  | Participation, Achievement Levels and Assigned Activity Points in |
|         | Participation         | NCC, NSS, Unnat Bharat/ Unnat Maharashtra Abhiyan, Ek Bharat      |
|         |                       | Shreshtha Bharat (EBSB)                                           |
| 3       | Sports and Games      | Participation, Achievement Levels and Assigned Activity Points in |
|         | Participation         | Sports and Games                                                  |
| 4       | Cultural Activities   | Participation, Achievement Levels and Assigned Activity Points in |
|         | Participation         | Music, Performing Arts, Literary Arts                             |
|         |                       |                                                                   |
|         |                       |                                                                   |
|         |                       |                                                                   |
|         |                       |                                                                   |

# Course Structure: (Refer Rules for Assigning Activity Points: Activity – Event Grade Point Scheme)

| Sr. No. | Initiatives                        | Criteria, Activities and Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5       | Professional Self<br>Initiatives   | <ul> <li>Participation, Achievement Levels and Assigned Activity Points in <ol> <li>Technical Events/Quiz/Paper Contest/Project Contest / Model</li> <li>Making etc.</li> <li>MOOC/ NPTEL/ SWAYAM/ Coursera etc.</li> <li>Competitions/ Events Conducted by Professional Societies <li>(ISTE, IEI, CSI, IEEE, IETE, SAE, ISRO-IIRS, SWE, ISHRAE, ASM, ISNT etc.)</li> </li></ol> </li> <li>Attending Full time Conference/ Seminars/ Exhibitions/ <ul> <li>Workshop/ STTP Conducted at IITs/ NITs/ Reputed Institutes/ <ul> <li>Universities</li> </ul> </li> <li>Attending Full time Conference/ Seminars/ Exhibitions/ <ul> <li>Workshop/ STTP Conducted at KITCoEK</li> </ul> </li> <li>Paper Presentation in National/ International Conference of <ul> <li>High Repute</li> </ul> </li> <li>Paper Publication in National/ International Journal of High Repute</li> <li>Industrial Training/ Internship (at least for 04 Weeks)</li> </ul></li></ul> |
| 6       | Entrepreneurship and<br>Innovation | <ul> <li>10. Participation in Institute Level Student Clubs</li> <li>Participation, Achievement Levels and Assigned Activity Points in</li> <li>1. Prototype Developed and Tested</li> <li>2. Awards for Products Developed</li> <li>3. Innovative Technologies Developed and Used by Industries</li> <li>4. Got Funding from Government/ Industry for Innovative Ideas</li> <li>5. Patent-Filed/ Published/ Approved/ Licensed</li> <li>6. Social Innovations</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Sr. No.                                   | Initiatives                                                                                          | Cri                                                                                                                                                                                                                                                                                                                                                    | teria, Activities and Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                                         | Leadership &<br>Management of Clui<br>Activities                                                     | Participation, Act<br>bs/<br>1. Elected Stud<br>Representatin<br>Secretary, La<br>Members)<br>2. Office Beare<br>IEEE, IETE,<br>etc.)<br>3. Office Beare<br>Student Club<br>Mavericks, C<br>Club of KIT<br>Equality Cel<br>4. Office Beare<br>5. Office Beare<br>6. Student Amb<br>iTBI etc.<br>7. Editorial Boa<br>8. Editorial Boa<br>9. Member of C | hievement Levels and Assigned Activity Points in<br>ent Representative of Student Council (University<br>ve, General Secretary, Cultural, Sports, NSS<br>adies Representative, Academic Toppers, Invitee<br>r of Professional Society Chapter (ISTE, IEI, CSI,<br>SAE, ISRO-IIRS, SWE, ISHRAE, ASM, ISNT<br>r of Institute Level Student Club (Developer<br>o, Gaganvedhi, Walk With World, Team<br>Cultural Club, Aura, Amateur Write Club, Rotaract<br>Sunshine, Women Development and Gender<br>l, Shourya, Lead India etc.)<br>r of Departmental Student Association<br>r of ECell, Digital Content Lab etc.<br>bassador for Mayura AICTE IDEA Lab/ NIDHI<br>ard Member of Annual Magazine<br>ard Member of E-Newsletter<br>Governance Committee/ Statutory Committee |
| 8                                         | Culminating Event a                                                                                  | and Final Presentation                                                                                                                                                                                                                                                                                                                                 | ns, Course Reflection, Documentation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Particina                                 | tion Levels.                                                                                         | Assessment and I                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. Le<br>2. Le<br>3. Le<br>4. Le<br>5. Le | Evel: ICollege IEvel: IIDistrict/ CEvel: IIIState LevEvel: IVNational IEvel: VInternation            | Level Events<br>Central/ Zonal Level Even<br>el Events<br>Level Events<br>nal Level Events                                                                                                                                                                                                                                                             | nts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Approval                                  | Documents:                                                                                           |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. Ce<br>2. Le<br>3. Ap<br>4. Do<br>5. Le | ertificate<br>etter from Authorities<br>opreciation recognition<br>ocumentary evidence<br>egal Proof | n letter                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Graunig                                   | Scheme.<br>Frade Range                                                                               | Grade                                                                                                                                                                                                                                                                                                                                                  | Academic Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           | 90-100                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                      | Outstanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                           | 71 to 90                                                                                             | A+                                                                                                                                                                                                                                                                                                                                                     | Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | 68-71                                                                                                | А                                                                                                                                                                                                                                                                                                                                                      | Very Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | 65-68                                                                                                | B+                                                                                                                                                                                                                                                                                                                                                     | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           | 60-65                                                                                                | В                                                                                                                                                                                                                                                                                                                                                      | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           | 55-60                                                                                                | С                                                                                                                                                                                                                                                                                                                                                      | Below Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                           | 50-55                                                                                                | D                                                                                                                                                                                                                                                                                                                                                      | Marginal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           | < 50                                                                                                 | F1                                                                                                                                                                                                                                                                                                                                                     | Fail due to Poor Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Title of the Course: Data Visualization and Analysis | L | Т | Р | Credit |
|------------------------------------------------------|---|---|---|--------|
| Course Code: UMEMM0641                               | 3 | - | - | 3      |

Course Pre-Requisite: Statistics and Fundamentals of Python

**Course Description:** This course gives knowledge on basics of statistical analysis of data. Also provides the insights of data behavior and its properties through graph visuals.

| 00  | After the completion of the course the student should            | Bloo  | m's Cognitive |
|-----|------------------------------------------------------------------|-------|---------------|
| CO  | be<br>able to                                                    | Level | Descriptor    |
| CO1 | Understand basics of data analytical concepts                    | II    | Understand    |
| CO2 | Analyze the data using statistical tools on raw data             | III   | Analyze       |
| CO3 | Apply the data transformation methods to generate synthetic data | IV    | Apply         |
| CO4 | Evaluate the model using transformed data                        | V     | Evaluate      |

# **CO-PO Mapping:**

| со  | PO1 | РО<br>2 | РО<br>3 | PO4 | PO5 | PO<br>6 | РО<br>7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | PO12 | PSO1 | PSO2 | Pso3 |
|-----|-----|---------|---------|-----|-----|---------|---------|---------|---------|----------|----------|------|------|------|------|
| CO1 | 1   | 1       |         |     |     |         |         |         |         |          |          | 1    |      |      | 1    |
| CO2 | 1   | 1       |         |     |     |         |         |         |         |          |          | 2    |      |      | 1    |
| CO3 | 1   | 1       |         |     | 1   |         |         |         |         |          |          | 1    |      |      | 1    |
| CO4 | 1   | 1       |         |     |     |         |         |         |         |          | 1        | 1    |      |      | 1    |

Assessments:

**Teacher Assessment:** 

One End Semester Examination (ESE) having 100% weightage.

| Assessment | Marks |  |
|------------|-------|--|
| ESE        | 100   |  |

ESE: Assessment is based on 100% course content.

#### **Course Contents:**

#### **Unit 1: Understanding Data Science**

Definition of data science and data analytics, Data Analytics Cycle: steps in EDA, Making sense of data: Numerical Data, Categorical Data and Measurement of Data, Getting Started with data analysis libraries: Numpy, Pandas, Scipy and Matplotlib.

#### Unit 2: Data Visualization

Data Visualization Tools : **Matplotlib**: Line Chart, Bar Chart, Scatter Chart, Area Chart, Pie Chart, Table Chart, Histogram.

Seaborn: Visualizing distributions of data, Visualizing statistical relationships

#### **Unit 3:Data Transformation**

Data Cleansing, loading CSV file, applying descriptive statistics, data refactoring, dropping columns, replacing values, handling missing values, renaming axis indices, discretization and binning, outlier detection and filtering, Permutation and Random Sampling.

#### **Unit 4: Descriptive Data Analysis**

**Understanding statistics**: Distributive function, descriptive statistics, Measure of Central Tenancy, Measures of Dispersion.

**Grouping dataset and correlation**: groupby mechanics, data aggregation, pivot tables, correlation definition, types of correlation analysis, case study of multivariate analysis using titanic dataset

#### **Unit 5:Time Series Analysis**

Understanding the time series dataset, data cleaning, time based indexing, visualizing time series, grouping and resampling time series data, time series forecasting and its methods, case studies of weather forecasting.

#### **Unit 6:Model Development and Evaluation**

Hypothesis Testing, Understanding regression, model evaluation, understanding supervised learning, unsupervised learning and reinforcement learning, understanding machine learning workflow.

07 Hrs.

**08 Hrs.** 

**08 Hrs.** 

**08 Hrs.** 

07 Hrs.

07 Hrs.

#### **Textbooks:**

1. "Hands on Exploratory Data Analysis with Python" by Suresh Kumar Mukhiya and Usman Ahmed,2020 Packt Publication.

#### **Reference books:**

1. "Python: Data Analytics and Visualization", by Phuong Vo.T. H, Martin Czygan, Ashish, Kirthi Raman, 2017 Packt Publication.

2. "Data Analytics & Visualization All in one" for Dummies A Wiley Brand, 2024

| Title of the Course : Micro Electro Mechanical Systems | L | Т | Р | Credit |
|--------------------------------------------------------|---|---|---|--------|
| Course Code: UMEMM0642                                 | 3 | - | - | 3      |

Course Pre-Requisite: Knowledge of basic Electronic Devices and Circuits, Digital Electronics

**Course Description:** A MEMS (Micro-Electro Mechanical Systems) course typically covers the fundamental principles of designing and fabricating miniature mechanical devices integrated with electronic circuitry, including topics like, micro sensing and actuation mechanisms, micro-fabrication techniques, device modeling, packaging.

#### **Course Learning Objectives:**

CLO1:To study the evolution of micro fabrication.

**CLO2:** To learn about the Micro sensors and Micro actuators

CLO3:To study various fabrication technologies.

CL04: To study various machining processes

#### **Course Learning Outcomes:**

| CO  | After successful completion of the course the student should                                     | Bloom | 's Cognitive  |
|-----|--------------------------------------------------------------------------------------------------|-------|---------------|
| CO  | beable to                                                                                        | level | Descriptor    |
| CO1 | <b>Explain</b> the fundamentals of Micro Electro Mechanical Systems and polymer and optical MEMS | II    | Understanding |
| CO2 | Outline the Polymer in MEMS and Optical MEMS                                                     | II    | Understanding |
| CO3 | Utilize MEMS techniques in Micro Sensor and Micro Actuators                                      | III   | Analyzing     |
| CO4 | <b>Explain</b> the various MEMS Fabrication Technologies and Micro Machining Processes           | V     | Evaluating    |

#### **CO-PO,PSO Mapping:**

| CO         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|------------|------------|-----|------|------|------|------|------|
| CO1        | 2   | 1   | 1   | 1   |     |     |            |            |     |      |      | 1    | 1    | 1    |
| CO2        | 2   | 1   | 1   | 1   |     |     |            |            |     |      |      | 1    | 1    | 1    |
| CO3        | 2   | 1   | 1   | 1   | 1   |     |            |            |     |      |      | 1    | 1    | 1    |
| <b>CO4</b> | 2   | 1   | 1   | 1   | 1   |     |            |            |     |      |      | 1    | 1    | 1    |

1:Low 2:Medium 3: High

Assessments:

**Teacher Assessment:** 

| Components | Marks |
|------------|-------|
| ESE        | 100   |

#### ESE: Assessment is based on 100% course content

| Course Contents:                                                                                 | Hours |
|--------------------------------------------------------------------------------------------------|-------|
| UNIT 1: - INTRODUCTION TO MEMS:                                                                  | 08    |
| Basic definitions - evolution of Micro fabrication - Micro systems and Microelectronics,         |       |
| scaling laws: Scaling in Electrostatic force, Electromagnetic force, Rigidity of structures,     |       |
| Fluid mechanics and Heat transfer                                                                |       |
| UNIT 2: - MICRO SENSORS:                                                                         | 08    |
| Introduction – Micro sensors: Bio medical sensors and Biosensors – Chemical sensors –            |       |
| Optical sensors – Pressure sensors – Thermal sensors, Acoustic wave sensors.                     |       |
| UNIT 3: - MICRO ACTUATORS:                                                                       | 07    |
| Micro Actuation: Actuation using thermal Forces, Piezo electric crystals, Electro static forces. |       |
| SMA based Micro actuators, Micro actuators: Micro grippers, Micro motors, Micro valves,          |       |
| Micro pumps, Micro accelerometers – Micro fluidics.                                              |       |
| UNIT 4: - MEMS FABRICATION TECHNOLOGIES:                                                         | 07    |
| Materials for MEMS: Silicon, Silicon compounds, Piezo electric crystals, Polymers                |       |
| Micro system Fabrication Process: Photolithography, Ion implantation, Diffusion, Oxidation,      |       |
| CVD, Sputtering, Etching techniques.                                                             |       |

| 1         |                                                                                       |        |
|-----------|---------------------------------------------------------------------------------------|--------|
| UNIT      | 5: - MICRO MACHINING:                                                                 | 07     |
| Micro     | Machining: Bulk micro machining, Surface micro machining, LIGA process.               |        |
| Packag    | ing: Micro system packaging, Essential packaging technologies, Selection of packaging |        |
| materia   |                                                                                       |        |
| 111400114 |                                                                                       |        |
| UNIT      | 6: - POLYMER AND OPTICAL MEMS:                                                        | 08     |
| Polyme    | ers in MEMS - Polimide - SU-8 - Liquid Crystal Polymer (LCP) - PDMS - PMMA -          |        |
| Parvlet   | be - Fluorocarbon - Application to Acceleration Pressure Flow and Tactile sensors -   |        |
| Ontica    | MEMS - Lenses and Mirrors - Actuators for Active Ontical MEMS                         |        |
| Applica   | ation of MEMS                                                                         |        |
| Applic    | ation of MEMIS -                                                                      |        |
| Case st   | udies: Blood Pressure Sensor, Microphone, MEMS Vibratory gyroscope                    |        |
|           |                                                                                       |        |
| Text B    | ooks:                                                                                 |        |
| 1.        | Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill,        |        |
|           | 2002.                                                                                 |        |
| 2.        | Cheng Liu, "Foundations of MEMS", Pearson education India limited, 2006               |        |
| 3         | S Fatikow U Rembold "Microsystem Technology and Microrobotics" Springer-Verlag        | Berlin |
| 5.        | Heidelberg New York in 1007                                                           |        |
| 4         | Stanhan D. Santuria "Microsystem Design" Springer Dublication 2000                    |        |
| 4.        | Stephen D Senturia, Microsystem Design, Springer Fubication, 2000.                    |        |
| Dofono    | naa Daalka                                                                            |        |
| Refere    |                                                                                       |        |
| 1.        | Marc Madou, "Fundamentals of Micro fabrication" CRC press 199/.                       |        |
| 2.        | Stephen D.Senturia, "Micro system Design" Kluwer Academic publishers, 2001.           |        |
| 3.        | K.Anatha Suresh, K.J.Vinoy, S.Gopala Krishnan, K.N.Bhat, V.K.Aatre, "Micro and smart  |        |
|           | systems", Willy India.                                                                |        |

4. Nitaigrun Premchand Mahalik, "MEMS", Tata McGraw Hill, 2007.

| ie or un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne Course: Energy Storage Devices L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Т                                     | P                                                      | Credit                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| urse C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ode: UMEMM0643 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | -                                                      | 3                                                       |
| urse P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re-Requisite: Thermodynamics, Heat Transfer, Basic Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Mate                              | erial Scie                                             | nce.                                                    |
| urse D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                        |                                                         |
| is cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | se provides a comprehensive overview of various energy storage t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | echnolog                              | ies, focus                                             | sing on the                                             |
| nciples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , applications, and performance characteristics. It covers electri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cal, thern                            | nal, mecl                                              | hanical, a                                              |
| emical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | energy storage systems, emphasizing their role in sustainable energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y system                              | s.                                                     |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                        |                                                         |
| ourse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objectives: The course aims to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                        |                                                         |
| • U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inderstand the fundamental principles and classifications of variou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s energy s                            | torage de                                              | evices.                                                 |
| • A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyze the performance characteristics and applications of different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t electric                            | al energy                                              | storage                                                 |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ystems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 .                                   | 1                                                      |                                                         |
| • E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evaluate the operational principles and applications of thermal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nechanic                              | al energy                                              | storage                                                 |
| C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                        |                                                         |
| 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ystems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arvahla ar                            |                                                        | l ann ant an                                            |
| • D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Design and assess the integration of energy storage systems into ren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ewable ei                             | nergy and                                              | l smart gr                                              |
| • E<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Usering and assess the integration of energy storage systems into remplications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ewable ei                             | nergy and                                              | l smart gr                                              |
| • E<br>a<br>ourse l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Design and assess the integration of energy storage systems into ren<br>pplications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ewable er                             | nergy and                                              | l smart gr                                              |
| • E<br>a<br>ourse l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | After the completion of the course the student should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ewable er                             | nergy and                                              | l smart gr                                              |
| • E<br>a<br>ourse l<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vestions.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to                                                                                                                                                                                                                                                                                                                                                                                                         | ewable en                             | nergy and<br>n's Cogn<br>Descr                         | l smart gr<br>itive<br>iptor                            |
| • E<br>a<br>ourse l<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ystems.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to         Students will be able to classify and compare different energy                                                                                                                                                                                                                                                                                                                                    | Bloom                                 | n's Cogni<br>Descr                                     | l smart gr<br>itive<br>iptor                            |
| • E<br>a<br>course b<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ystems.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to         Students will be able to classify and compare different energy storage technologies.                                                                                                                                                                                                                                                                                                              | Bloon<br>level<br>2                   | n's Cogn<br>Descr<br>Under                             | l smart gr<br>itive<br>iptor<br>rstanding               |
| • E<br>a<br>course l<br>CO<br>CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ystems.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to         Students will be able to classify and compare different energy storage technologies.         Students will be able to evaluate the performance of batteries,                                                                                                                                                                                                                                      | Bloom<br>level<br>2                   | n's Cogn<br>Descr<br>Under                             | l smart gr<br>itive<br>iptor<br>rstanding               |
| • E<br>a<br>course co<br>CO<br>CO1<br>CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | After the completion of the course the student should be<br>able to<br>Students will be able to classify and compare different energy<br>storage technologies.<br>Students will be able to evaluate the performance of batteries,<br>supercapacitors, and fuel cells.                                                                                                                                                                                                                                                                                                                                         | ewable en<br>Bloom<br>level<br>2<br>4 | n's Cogn<br>Descr<br>Under<br>Analy                    | l smart gr<br>itive<br>iptor<br>rstanding<br>rze        |
| • E<br>a<br>course 1<br>CO<br>CO1<br>CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ystems.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to         Students will be able to classify and compare different energy storage technologies.         Students will be able to evaluate the performance of batteries, supercapacitors, and fuel cells.         Students will be able to analyze thermal energy storage systems                                                                                                                             | Bloom<br>level<br>2<br>4              | n's Cogn<br>Descr<br>Under<br>Analy                    | l smart gr<br>itive<br>iptor<br>rstanding<br>rze        |
| • E<br>a<br>course control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>control<br>c | ystems.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to         Students will be able to classify and compare different energy storage technologies.         Students will be able to evaluate the performance of batteries, supercapacitors, and fuel cells.         Students will be able to analyze thermal energy storage systems like sensible and latent heat storage.                                                                                      | Bloom<br>level<br>2<br>4<br>5         | n's Cogni<br>Descr<br>Under<br>Analy<br>Evalu          | l smart gr<br>itive<br>iptor<br>rstanding<br>rze<br>ate |
| • E<br>a<br>course contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contraction<br>contr                                                                                                                                                                                                                                                                | After the completion of the course the student should be<br>able to<br>Students will be able to classify and compare different energy<br>storage technologies.<br>Students will be able to evaluate the performance of batteries,<br>supercapacitors, and fuel cells.<br>Students will be able to analyze thermal energy storage systems<br>like sensible and latent heat storage.<br>Students will be able to design and evaluate a hybrid energy storage                                                                                                                                                    | Bloom<br>level<br>2<br>4<br>5<br>ge 6 | n's Cogn<br>Descr<br>Under<br>Analy<br>Evalu<br>Create | l smart gr<br>itive<br>iptor<br>rstanding<br>rze<br>ate |
| • E<br>a<br>co<br>co<br>co<br>co<br>co<br>co<br>co<br>co<br>co<br>co<br>co<br>co<br>co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ystems.         Design and assess the integration of energy storage systems into remplications.         Learning Outcomes:         After the completion of the course the student should be able to         Students will be able to classify and compare different energy storage technologies.         Students will be able to evaluate the performance of batteries, supercapacitors, and fuel cells.         Students will be able to analyze thermal energy storage systems like sensible and latent heat storage.         Students will be able to design and evaluate a hybrid energy storage systems | Bloom<br>level<br>2<br>4<br>5<br>ge 6 | n's Cogn<br>Descr<br>Under<br>Analy<br>Evalu<br>Create | l smart gr<br>itive<br>iptor<br>rstanding<br>rze<br>ate |

| CO - PO Mapping |   |      |   |   |   |   |   |   |   |    |    |       |   |   |
|-----------------|---|------|---|---|---|---|---|---|---|----|----|-------|---|---|
| Corres Ortoomor |   | PO's |   |   |   |   |   |   |   |    |    | PSO's |   |   |
| Course Outcomes | 1 | 2    | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 1     | 2 | 3 |
| CO1             | 3 | 0    | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1  | 0  | 0     | 0 | 0 |
| CO2             | 2 | 3    | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0  | 0  | 0     | 0 | 2 |
| CO3             | 0 | 0    | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0  | 1  | 2     | 2 | 0 |
| CO4             | 0 | 0    | 2 | 2 | 2 | 2 | 0 | 1 | 0 | 0  | 0  | 0     | 0 | 2 |

# Assessments : Teacher Assessment:

Two components of in Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

| Assessment | Marks |
|------------|-------|
| ISE 1      | 10    |
| MSE        | 30    |
| ISE 2      | 10    |
| ESE        | 50    |
| ESE        | 50    |

| MSE: Assessment is based on 50% of course content (Normally first three modules)<br>ESE: Assessment is based on 100% course content with 60-70% weightage for course content(normalist three modules) covered after MSE. | ılly     |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
| ESE: Assessment is based on 100% course content with 60-70% weightage for course content(normal last three modules) covered after MSE.                                                                                   | ılly<br> |  |  |  |  |  |  |  |
| last three modules) covered after MSE.                                                                                                                                                                                   |          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                          |          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                          |          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                          |          |  |  |  |  |  |  |  |
| Course Contents:<br>Unit 1: Nood for operate storage classification of operate storage systems, performance                                                                                                              |          |  |  |  |  |  |  |  |
| Dint 1: Need for energy density, power density, cycle life, efficiency), applications of energy                                                                                                                          |          |  |  |  |  |  |  |  |
| storage                                                                                                                                                                                                                  |          |  |  |  |  |  |  |  |
| • Energy storage and the smart grid                                                                                                                                                                                      | 1115.    |  |  |  |  |  |  |  |
| <ul> <li>Environmental impacts of energy storage</li> </ul>                                                                                                                                                              |          |  |  |  |  |  |  |  |
| - Environmental impacts of energy storage.                                                                                                                                                                               |          |  |  |  |  |  |  |  |
| Unit 2: Electrical Energy Storage: Batteries                                                                                                                                                                             |          |  |  |  |  |  |  |  |
| • Fundamentals of electrochemical storage, types of batteries (lead-acid, lithium-ion,                                                                                                                                   |          |  |  |  |  |  |  |  |
| nickel-based, flow batteries), battery characteristics and modeling, battery management 08                                                                                                                               | Hrs.     |  |  |  |  |  |  |  |
| systems (BMS), battery safety and recycling.                                                                                                                                                                             |          |  |  |  |  |  |  |  |
| • Solid state batteries.                                                                                                                                                                                                 |          |  |  |  |  |  |  |  |
| Unit 2. Electrical Energy Storage, Conscitors and Evel Cells                                                                                                                                                             |          |  |  |  |  |  |  |  |
| • Superconsisters: principles, types, and explications                                                                                                                                                                   | Ura      |  |  |  |  |  |  |  |
| • Supercapacitors, principles, types, and applications. 07                                                                                                                                                               | 1115.    |  |  |  |  |  |  |  |
| • Fuel cens. principles, types (FEWFC, SOFC), performance characteristics, and                                                                                                                                           |          |  |  |  |  |  |  |  |
| Applications.     Hybrid energy storage systems (battery supercapacitor)                                                                                                                                                 |          |  |  |  |  |  |  |  |
| • Tryond energy storage systems (battery-supercapacitor).                                                                                                                                                                |          |  |  |  |  |  |  |  |
| Unit 4: Thermal Energy Storage                                                                                                                                                                                           |          |  |  |  |  |  |  |  |
| • Sensible heat storage (water, solids), latent heat storage (phase change materials),                                                                                                                                   |          |  |  |  |  |  |  |  |
| thermochemical energy storage, applications in solar thermal systems and building                                                                                                                                        | Ŧ        |  |  |  |  |  |  |  |
| heating/cooling.                                                                                                                                                                                                         | Hrs.     |  |  |  |  |  |  |  |
| Thermal energy storage for concentrated solar power.                                                                                                                                                                     |          |  |  |  |  |  |  |  |
| Unit 5: Mechanical Energy Storage                                                                                                                                                                                        |          |  |  |  |  |  |  |  |
| Pumped hydro storage, compressed air energy storage (CAES), flywheel energy                                                                                                                                              |          |  |  |  |  |  |  |  |
| storage, principles, and applications.                                                                                                                                                                                   | Hrs.     |  |  |  |  |  |  |  |
| Unit 6: Energy Storage System Integration and Applications.                                                                                                                                                              |          |  |  |  |  |  |  |  |
| • Integration of energy storage into renewable energy systems (solar, wind), energy                                                                                                                                      |          |  |  |  |  |  |  |  |
| storage for grid stabilization, microgrids, electric vehicles, and portable electronics, 08                                                                                                                              | Hrs.     |  |  |  |  |  |  |  |
| economic analysis of energy storage systems.                                                                                                                                                                             |          |  |  |  |  |  |  |  |
| Energy storage for off grid applications.                                                                                                                                                                                |          |  |  |  |  |  |  |  |
| Energy Storage: A Systems Approach" by I A Duffie and W A Beckman                                                                                                                                                        |          |  |  |  |  |  |  |  |
| <ul> <li>Energy Storage Systems" by Godfrey Boyle.</li> </ul>                                                                                                                                                            |          |  |  |  |  |  |  |  |
| Reference Books:                                                                                                                                                                                                         |          |  |  |  |  |  |  |  |
| Battery Technology Handbook" by K. Miyazaki.                                                                                                                                                                             |          |  |  |  |  |  |  |  |
| • Thermal Energy Storage: Systems and Applications" by L Dincer and M A. Rosen                                                                                                                                           |          |  |  |  |  |  |  |  |
| • Journals: Journal of Energy Storage, Applied Energy.                                                                                                                                                                   |          |  |  |  |  |  |  |  |

| Tit                                                                                             | le of t       | the Co  | urse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : SUST                | AINA             | BLE E    | ENG   | INEERI        | NG           |         |           | L        | Τ        | Р         | Credit    |
|-------------------------------------------------------------------------------------------------|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|----------|-------|---------------|--------------|---------|-----------|----------|----------|-----------|-----------|
| Co                                                                                              | urse (        | Code:   | UME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EMN066                | 51               |          |       |               |              |         |           | 3        | 1        |           | 4         |
| Co                                                                                              | urse l        | Pre-R   | equis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite: Bas              | sic kno          | owledg   | ge o  | f enviror     | nmenta       | l scier | nce, eng  | gineerii | ng mate  | erials, a | nd energy |
| systems.                                                                                        |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                  |          |       |               |              |         |           |          |          |           |           |
|                                                                                                 | urse I        | Descri  | ption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:                    | 1                |          |       |               |              |         |           | C        |          |           | . 1       |
| I his course introduces students to sustainable engineering principles, focusing on environment |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                  |          |       |               |              |         | onmental, |          |          |           |           |
| ecc                                                                                             | nomi<br>aroon | c, and  | socia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l sustan              | habilit          | y. It co | over  | s sustain     | able de      | esign,  | renewa    | ble ene  | ergy, wa | aste mar  | nagement, |
| and                                                                                             | i greei       |         | lolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | jies.                 |                  |          |       |               |              |         |           |          |          |           |           |
| Co                                                                                              | urse (        | Object  | tives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                   |                  | C        |       | • • • • • • • | 1.1          |         | 1         |          |          |           |           |
|                                                                                                 | 1. I<br>2 T   | o unde  | erstar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | id the pi             | incipl<br>incipl | es of s  | usta  | inability     | and th       | eir ap  | plicatio  | n in en  | gineeri  | ng.       |           |
|                                                                                                 | 2. T<br>3. T  | o expl  | ore ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enewabl               | e ener           | gy sou   | irces | s and sus     | stainab      | le mat  | erials.   | 0115.    |          |           |           |
|                                                                                                 | 4. T          | o integ | grate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sustaina              | bility           | into en  | ngin  | eering d      | esign a      | nd de   | cision-r  | naking   |          |           |           |
| Co                                                                                              | urse (        | Jutco   | mes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                  |          |       |               |              |         |           |          |          |           |           |
| C                                                                                               | 0             | After   | the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ompleti               | on of            | the co   | urse  | e the stu     | dent s       | hould   | be abl    | e to     |          |           |           |
| C                                                                                               | 01 1          | Explai  | n the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | princip               | les of s         | sustair  | nabil | lity and t    | heir re      | levano  | e to en   | gineeri  | ng.      |           |           |
| C                                                                                               | 02            | Analyz  | ze en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vironme               | ntal cl          | nalleng  | ges a | and prop      | ose sus      | stainał | ole solu  | tions.   | -        |           |           |
| C                                                                                               | 03 1          | Evalua  | te rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | newable               | energ            | y sour   | ces   | and susta     | ainable      | e mate  | rials.    |          |          |           |           |
| С                                                                                               | O4 /          | Apply   | susta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | inability             | y conc           | epts ir  | n eng | gineering     | g desig      | n and   | decisio   | n-maki   | ng.      |           |           |
| 00                                                                                              |               | N.7     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                  |          |       |               |              |         |           |          |          |           |           |
|                                                                                                 | <u>-PO </u>   | VIapp   | Ing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO3                   | PO4              | P05      | PO    | 6 PO7         | PO8          | PO9     | PO10      | PO11     | PSO1     | PSO2      | PSO3      |
|                                                                                                 | C01           | 3       | 3         2         3         2         3         2         3         2         3         2         3         2         3         3         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 |                       |                  |          |       |               |              | 1505    |           |          |          |           |           |
| -                                                                                               | CO2           |         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                  |          |       |               |              |         |           |          |          |           |           |
|                                                                                                 | CO3           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                     |                  | 3        | 3     |               |              |         |           |          |          | 3         |           |
|                                                                                                 | CO4           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                     |                  |          | 3     |               |              |         |           | 3        |          |           | 3         |
| As                                                                                              | sessm         | ent Sc  | hem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e:                    |                  |          |       |               |              |         |           |          |          |           |           |
| 110                                                                                             | 5055111       |         | SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Assess                | ment             | Mar      | ks    | Remar         | k            |         |           |          |          |           |           |
|                                                                                                 |               | h       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ESE                   | ment             | 10       | )     | Written       | N<br>Paper   | •       |           |          |          |           |           |
|                                                                                                 |               |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 202                   |                  | 10       | 0     |               |              |         |           |          |          |           |           |
| Co                                                                                              | urse (        | Conter  | nts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                  |          |       |               |              |         |           |          |          |           |           |
| Un<br>No                                                                                        | it            | Unit    | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and Co                | ontent           | 5        |       |               |              |         |           |          |          |           | Hours     |
|                                                                                                 |               | Intro   | ducti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ion to S              | ustain           | abilit   | у     |               |              |         |           |          |          |           |           |
|                                                                                                 |               | • Def   | initio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n, scope              | e, and           | impor    | tanc  | e of sust     | ainabil      | lity in | enginee   | ering.   |          |           |           |
| Ur                                                                                              | nit 1         | • Trip  | ole Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ottom L               | ine: Eı          | nviron   | men   | ital, econ    | iomic,       | and so  | ocial su  | stainab  | ility.   |           | 6Hrs.     |
|                                                                                                 |               | • Con   | icepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s of sust<br>nontal a | ainabl           | e deve   | lopi  | nent: Br      | undtla       | nd Coi  | nmissi    | on & S   | DGs.     |           |           |
|                                                                                                 |               | Envi    | ronm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ental C               | haller           | nges a   | nd S  | Solutions     | n engli<br>S |         |           |          |          |           |           |
|                                                                                                 |               | • Glo   | bal e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nvironm               | ental            | issues   | Pol   | lution. d     | efores       | tation  | climate   | e chang  | e.       |           |           |
| Ur                                                                                              | sit 2         | • Car   | bon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | footprir              | it, ecc          | ologica  | al fo | ootprint,     | and          | enviro  | onmenta   | il imp   | act ass  | essment   | QUre      |
|                                                                                                 | int 2         | (ELA    | <b>A)</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                     |                  | -        |       |               |              |         |           | *        |          |           | 01115     |
|                                                                                                 |               | • Was   | ste m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anagem                | ent: So          | olid w   | aste, | , e-waste     | , waste      | ewater  | treatm    | ent.     |          |           |           |
|                                                                                                 |               | • Circ  | cular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | econom                | y prin           | ciples:  | Re    | duce, reu     | ise, rec     | ycle.   |           |          |          |           |           |

|                                                              | Renewable Energy and Sustainable Materials                                            |          |  |  |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
|                                                              | • Renewable energy sources: Solar, wind, hydro, biofuels, geothermal.                 |          |  |  |  |  |  |  |  |
| 11.4.2                                                       | • Energy efficiency strategies and green building technologies.                       | 011      |  |  |  |  |  |  |  |
| Units                                                        | • Sustainable materials: Bamboo, bioplastics, eco-friendly concrete, recyclable       | 8Hrs     |  |  |  |  |  |  |  |
|                                                              | metals.                                                                               |          |  |  |  |  |  |  |  |
|                                                              | • Life cycle analysis (LCA) of materials and energy systems.                          |          |  |  |  |  |  |  |  |
|                                                              | Sustainable Engineering Design                                                        |          |  |  |  |  |  |  |  |
|                                                              | • Principles of sustainable design and green manufacturing.                           | 10       |  |  |  |  |  |  |  |
| Unit 4                                                       | • Design for Environment (DfE) & Cradle-to-Cradle concept.                            |          |  |  |  |  |  |  |  |
|                                                              | • Low-impact product design: Eco-labeling and environmental certifications.           |          |  |  |  |  |  |  |  |
|                                                              | • Case studies on sustainable engineering projects.                                   |          |  |  |  |  |  |  |  |
|                                                              | Policy, Regulations, and Global Initiatives                                           |          |  |  |  |  |  |  |  |
|                                                              | • Environmental policies and legal frameworks: The Water Act, The Air Act, EPA        |          |  |  |  |  |  |  |  |
| Unit 5                                                       | regulations.                                                                          | 8 Hrs    |  |  |  |  |  |  |  |
|                                                              | • International agreements: Kyoto Protocol, Paris Agreement, SDGs.                    | 0 111 5. |  |  |  |  |  |  |  |
|                                                              | • Corporate sustainability strategies and ESG reporting.                              |          |  |  |  |  |  |  |  |
|                                                              | • Role of government and industries in sustainable development.                       |          |  |  |  |  |  |  |  |
|                                                              | Case Studies and Applications:                                                        |          |  |  |  |  |  |  |  |
|                                                              | • Sustainable transportation systems: EVs, smart grids, and urban mobility solutions. |          |  |  |  |  |  |  |  |
| Unit 6                                                       | • Circular economy models in manufacturing industries.                                | 6Hrs     |  |  |  |  |  |  |  |
|                                                              | • Smart cities and sustainable urban planning.                                        |          |  |  |  |  |  |  |  |
|                                                              | • Innovations in waste reduction and sustainable packaging.                           |          |  |  |  |  |  |  |  |
| l utoria                                                     | I Contents:                                                                           |          |  |  |  |  |  |  |  |
| T1                                                           | Case study on sustainable cities and smart infrastructure.                            |          |  |  |  |  |  |  |  |
| T2                                                           | Conduct a life cycle assessment (LCA) of a consumer product.                          |          |  |  |  |  |  |  |  |
| T3                                                           | Design a renewable energy system for a community.                                     |          |  |  |  |  |  |  |  |
| T4                                                           | Comparative analysis of waste management techniques in different countries.           |          |  |  |  |  |  |  |  |
| Text Bo                                                      | ooks:                                                                                 |          |  |  |  |  |  |  |  |
| I. Sus                                                       | tainable Engineering: Concepts, Design, and Case Studies – David T. Allen & David R.  | •        |  |  |  |  |  |  |  |
| Sho                                                          | onnard                                                                                |          |  |  |  |  |  |  |  |
| 2. IIII<br>3 Em                                              | vironmental Engineering: Eundementals, Sustainability, Design, James R. Mibelcic &    | Iulie R  |  |  |  |  |  |  |  |
| J. Lii<br>Zin                                                | imerman                                                                               | June D.  |  |  |  |  |  |  |  |
| 4. Ha                                                        | ndbook of Sustainable Development Through Green Engineering and Technology – Vik      | ram      |  |  |  |  |  |  |  |
| Ba                                                           | i                                                                                     |          |  |  |  |  |  |  |  |
| 5. Eng                                                       | gineering Applications in Sustainable Design and Development – B.A. Striebig          |          |  |  |  |  |  |  |  |
| 6. Intr                                                      | oduction to Sustainable Engineering – R.L. Rag & Lekshmi Dinachandran Remesh          |          |  |  |  |  |  |  |  |
| 7. Ha                                                        | ndbook of Sustainable Building Design and Engineering – Dejan Mumovic & Mat Santa     | amouris  |  |  |  |  |  |  |  |
| Referen                                                      | ice Books:                                                                            |          |  |  |  |  |  |  |  |
| 1. Eng                                                       | gineering for Sustainable Development – William M. Adams                              |          |  |  |  |  |  |  |  |
| 2. Kei<br>2. Lia                                             | newable Energy and Sustainable Engineering – John 1 Widell & 1 ony Weir               |          |  |  |  |  |  |  |  |
| $\begin{array}{c c} J & \Pi a \\ \hline A & Suc \end{array}$ | tainable Engineering: Concents and Practices – Israel Sunday Dunmade, Michael Olaw    | ale      |  |  |  |  |  |  |  |
|                                                              | ramola & Samuel Avodele Iwarere                                                       | u10      |  |  |  |  |  |  |  |
| 5. Fu                                                        | ndamentals of Sustainable Drilling Engineering – M.E. Hossain                         |          |  |  |  |  |  |  |  |
| 6. Ha                                                        | ndbook of Environmental Engineering – Frank R. Spellman                               |          |  |  |  |  |  |  |  |

# Kolhapur Institute of Technology's College of Engineering, Kolhapur



# **Curriculum (Structure)**

for

B.TECH Robotics (Hons.) Programme (Under Graduate Programme) From Academic Year 2021-2022

# Kolhapur Institute of Technology's College of Engineering,(Autonomous) Kolhapur.

# **Department of Mechanical Engineering**

Teaching and Credit scheme for

# Propose B.Tech. Robotics (Hons.) Programme in Mechanical Engineering

| Course No. | . Course Name Semester No. of Hours          |     |    |   |   |         |  |  |  |  |  |
|------------|----------------------------------------------|-----|----|---|---|---------|--|--|--|--|--|
|            |                                              |     | L  | Т | Р | Credits |  |  |  |  |  |
| UMEHN0351  | FUNDAMENTALS OF ROBOTICS                     | III | 3  | 1 |   | 4       |  |  |  |  |  |
| UMEHN0451  | FUNDAMENTALS OF<br>MICROCONTROLLERS          | IV  | 3  | 1 |   | 4       |  |  |  |  |  |
| UMEHN0551  | PROGRAMMING &<br>SIMULATIONS<br>FOR ROBOTICS | V   | 3  | 1 |   | 4       |  |  |  |  |  |
| UMEHN0651  | ROBOT KINEMATICS AND<br>DYNAMICS             | VI  | 3  | 1 |   | 4       |  |  |  |  |  |
| UMEH0701   | MINI PROJECT                                 | VII | -  | - | 4 | 2       |  |  |  |  |  |
|            |                                              |     | 12 | 4 | 4 | 18      |  |  |  |  |  |

Total Credits - 18, Total Contact hours - 20

UMEHN0351 As per NEP Structure AY2425 onwards

| Assessment | Marks |
|------------|-------|
| ESE        | 100   |

| Title of the Course: Robot Kinematics and Dynamics       L       T       P         |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        | Р      | Credit    |                   |              |                   |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|---------|-------|---------|--------|--------|---------|--------|--------|-----------|-------------------|--------------|-------------------|
| Course                                                                             | Co                                                                                                                                                                    | de: 1                | UME        | EHN0    | 651   |         |        |        | 5       |        |        | 3         | 1                 |              | 4                 |
| Course                                                                             | Course Pre-Requisite: Basic electronics & electrical, Basic Sciences,                                                                                                 |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| Course<br>also des                                                                 | <b>Course Description:</b> This course gives knowledge about Robotics and its kinematics and dynamics. It also describes the fundamentals of Artificial Intelligence. |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| Course                                                                             | Course Objectives                                                                                                                                                     |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| 1. To understand basic terminologies and concepts associated with Robotics.        |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| 2.                                                                                 | 2. To study various Robotic kinematics, forward and backward or inverse.                                                                                              |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| 3. To study kinematics and dynamics to understand exact working pattern of robots. |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| 4. 10 study the associated recent updates in Artificial Intelligence.              |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| Course                                                                             | Course Learning Outcomes:                                                                                                                                             |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| CO                                                                                 | Aft                                                                                                                                                                   | er t                 | he c       | ompl    | etior | n of th | e cou  | rse th | e stud  | lent   |        | Bloom'    | s Cogr            | itive        |                   |
|                                                                                    | sho                                                                                                                                                                   | uld                  | be a       | ble to  | 0     |         |        |        |         |        |        | level     |                   | Desc         | criptor           |
| CO1                                                                                | Def                                                                                                                                                                   | f <b>ine</b><br>rksp | Va<br>Vace | arious  | r     | obot    | strue  | ctures | and     | d th   | eir    | Ι         |                   | Cogr<br>(Kno | nitive<br>wledge) |
| CO2                                                                                | Int                                                                                                                                                                   | erni                 | ret        | sna     | atial | transf  | orma   | tions  | assoc   | iated  |        | II        |                   | Cogr         | nitive            |
|                                                                                    | wit                                                                                                                                                                   | h rig                | gid b      | ody n   | notic | ons     |        |        | 45500   | latea  |        |           |                   | (Kno         | wledge)           |
| CO3                                                                                | O3     Acquire knowledge of fundamentals of Artificial     III     Cognitive (Knowledge)                                                                              |                      |            |         |       |         |        |        |         |        |        |           | nitive<br>wledge) |              |                   |
| CO4                                                                                | Re                                                                                                                                                                    | late                 | the        | e pro   | blen  | n log   | ically | and    | dem     | onstr  | ate    | III       |                   | Psyc         | homotor           |
| problem solving with Artificial Intelligence technique                             |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        | (Skil  | l)        |                   |              |                   |
| CO-PC                                                                              | ) Ma                                                                                                                                                                  | appi                 | ng:        |         |       |         |        |        |         |        |        |           |                   |              |                   |
| _                                                                                  |                                                                                                                                                                       | 11                   |            |         |       |         |        |        | _       | _      | _      |           |                   |              |                   |
| CO                                                                                 | 1                                                                                                                                                                     | 2                    | 3          | 4       | 5     | 6       | 7      | 8      | 9       | 10     | 11     | PSO1      | PSO2              | PSO3         |                   |
| <u>CO1</u>                                                                         | 2                                                                                                                                                                     |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| $CO_2$                                                                             | 2                                                                                                                                                                     | 2                    |            | 3       | 2     |         |        |        |         |        |        | 3         | 2                 |              |                   |
| $\frac{100}{100}$                                                                  |                                                                                                                                                                       | 3                    |            |         | 3     |         |        | 2      |         |        | 2      | 2         | 2                 |              |                   |
|                                                                                    | nont                                                                                                                                                                  | 2                    |            |         | 3     |         |        | 0      |         |        | 3      | 3         |                   |              |                   |
| Teache                                                                             | er As                                                                                                                                                                 | s:<br>sess           | smer       | nt:     |       |         |        |        |         |        |        |           |                   |              |                   |
|                                                                                    |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
|                                                                                    |                                                                                                                                                                       |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| No ISF                                                                             | 1 9                                                                                                                                                                   | nd I                 | [SE ]      | II an   | d M   | SE:     |        |        |         |        |        |           |                   |              |                   |
| ESE: F                                                                             | inal                                                                                                                                                                  | ESF                  | EAss       | essm    | ent i | s based | 1 on   | 100%   | course  | e cont | ent fo | or 100 n  | narks.            |              |                   |
| Course                                                                             | Co                                                                                                                                                                    | nten                 | its:       |         | • 1   |         |        |        |         |        |        |           |                   |              |                   |
| Unit 1:                                                                            | - Int                                                                                                                                                                 | trod                 | ucti       | on      |       |         |        |        |         |        |        |           |                   | (            | 05)Hrs.           |
| The m                                                                              | The mechanics and control of manipulators :- The description of position and                                                                                          |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| orientat                                                                           | orientation, Concept of Forward kinematics of manipulators, Inverse                                                                                                   |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| kinemat<br>work vo                                                                 | kinematics of manipulators, Velocities, static forces, singularities, Robot joints and<br>work volume                                                                 |                      |            |         |       |         |        |        |         |        |        |           |                   |              |                   |
| Unit 2:- Forward Kinematics :- (05)F                                               |                                                                                                                                                                       |                      |            |         |       |         |        |        | 05)Hrs. |        |        |           |                   |              |                   |
| Descrip                                                                            | tion                                                                                                                                                                  | Pos                  | sitio      | n, orie | entat | ion an  | d fra  | mes. ] | Fransf  | ormat  | tion 1 | matrices  | and th            | eir (        | -,                |
| arithme                                                                            | tic, I                                                                                                                                                                | link                 | and        | joint o | lesci | iption  | , Map  | ping:  | Chang   | ging d | escri  | ptions to | o frame           | e to         |                   |
| frame,                                                                             | Opeı                                                                                                                                                                  | atic                 | ons: [     | Frans   | latio | n, Rota | ation  | and tr | ansfor  | matic  | n De   | enavit-H  | artenb            | erg          |                   |
| parame                                                                             | ters,                                                                                                                                                                 | frai                 | me a       | ssigni  | nent  | to link | cs, di | rect   |         |        |        |           |                   |              |                   |

| kinematics,                                                                            |           |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|
| Unit 3:-Manipulator Kinematics:-                                                       | (06)Hrs.  |  |  |  |  |  |  |  |
| Link Description, Link connection description, convention for affixing Frames to       |           |  |  |  |  |  |  |  |
| links, Actuator Space, Joint space, Cartesian space, Frames with standard names.       |           |  |  |  |  |  |  |  |
| Unit 4:- Inverse kinematics:- Kinematics redundancy, kinematics calibration.           |           |  |  |  |  |  |  |  |
| inverse kinematics, solvability, algebraic and geometrical methods. Velocities and     |           |  |  |  |  |  |  |  |
| Static forces in manipulators: - Jacobeans, singularities, static forces, Jacobean in  |           |  |  |  |  |  |  |  |
| force domain.                                                                          |           |  |  |  |  |  |  |  |
| Unit5:- Dynamics :-                                                                    | (07) Hrs. |  |  |  |  |  |  |  |
| Introduction to Dynamics, Trajectory generations, Forward Dynamics and Inverse         |           |  |  |  |  |  |  |  |
| Dynamics - Importance - Spatial description and transformations - Different types      |           |  |  |  |  |  |  |  |
| of dynamic formulation schemes - Lagrangian formulation for equation of motion         |           |  |  |  |  |  |  |  |
| for robots and manipulators.                                                           |           |  |  |  |  |  |  |  |
| Unit6:-Trajectory Planning                                                             |           |  |  |  |  |  |  |  |
| Trajectory planning, Geometric Jacobian / Analytical Jacobian, Singularities and       |           |  |  |  |  |  |  |  |
| redundancy, Inverse kinematics algorithms, Statics and manipulability, Kinematic       |           |  |  |  |  |  |  |  |
| solutions and trajectory planning,                                                     |           |  |  |  |  |  |  |  |
| Text Books:                                                                            |           |  |  |  |  |  |  |  |
| 1. John J. Craig, Introduction to Robotics (Mechanics and Control),                    |           |  |  |  |  |  |  |  |
| Addison-Wesley,                                                                        |           |  |  |  |  |  |  |  |
| 2. 2nd Edition, 2004                                                                   |           |  |  |  |  |  |  |  |
| 3. Mikell P. Groover et. Al., Industrial Robotics: Technology,                         |           |  |  |  |  |  |  |  |
| Programming and Applications, McGraw – Hill International, 1986.                       |           |  |  |  |  |  |  |  |
| 4. Shimon Y. Nof, Handbook of Industrial Robotics, John Wiley Co,                      |           |  |  |  |  |  |  |  |
|                                                                                        |           |  |  |  |  |  |  |  |
| 5. Artificial Intelligence A modern approach by Stuart Russell 2 <sup>nd</sup> edition |           |  |  |  |  |  |  |  |
| 6. Artificial Intelligence by Saroj Kaushik                                            |           |  |  |  |  |  |  |  |
| <b>Keierence Books:</b>                                                                |           |  |  |  |  |  |  |  |
| I. Richard D. Klatter, Thomas A. Chemielewski, Michael Negin,                          |           |  |  |  |  |  |  |  |
| 2. KODOLIC Engineering: An Integrated Approach, Prentice Hall India, 2002.             |           |  |  |  |  |  |  |  |
| and Sons                                                                               |           |  |  |  |  |  |  |  |
| and Sons.                                                                              |           |  |  |  |  |  |  |  |

| Course Code:UMEEX0691       3       0       0       3         Course Pre-Requisite: Knowledge of Machine drawing, isometric &orthographic projection and CNC machines is essential.       Course Description:Under this course the student will be introduced to the principles of parametric design using computer aided design software. Students will construct 3 models and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.         Course Objectives:       1       To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software and measure its physical properties.       5       Tobuild 3D assemblies using CAD software and measure its physical properties.         3. To Build 2D projections from 3D models and assemblies       5       ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:       3       Construct 3D solid and surface Models of parts using CAD 3       Construct software and measure its physical properties.         CO2       Build 3D assemblies withappropriate assembly approachand 2D 3       Build       Build         CO4fter the completion of the course the student should be able to projections using CAD software.       3       Construct 3D solid and surface Models of parts using CAD 3       Construct software and measure its physical properties.         CO2       Build 3D assemblies withapproprinte a | Title of                                                                                     | f the (                                                                                | Cours            | e:CAl        | D/CA       | M/CA           | E       |         |                    |         |           | L       | Т        | Р       | Credit   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|--------------|------------|----------------|---------|---------|--------------------|---------|-----------|---------|----------|---------|----------|
| Course Pre-Requisite: Knowledge of Machine drawing, isometric & orthographic projection and CNC machines is essential.         Course Description:Under this course the student will be introduced to the principles of parametric design using computer aided design software. Students will construct 3 models and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.         Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software and measure its physical properties.         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Coorse Learning Outcomes:         CO1       Construct 3D solid and surface Models of parts using CAD       3       Construct         CO2       Build 3D assemblies withappropriate assembly approach and 2D       3       Build         CO2       Build 3D assemblies withappropriate assembly approach and 2D       3       Build         CO4       After the completion of the course the student should be be alloom's Cognitive able to appropriate assembly approach and 2D       3       Build         CO2       Bu                                                                                                           | Course                                                                                       | e Code                                                                                 | e:UM             | EEX0         | 691        |                |         |         |                    |         |           | 3       | 0        | 0       | 3        |
| and CNC machines is essential.         Course Description:Under this course the student will be introduced to the principles of parametric design using computer aided design software. Students will construct 3 models and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.         Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software 3D software and measure its physical properties.         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct software.         CO2       Build 3D assemblies withappropriate assembly approachand 2D 3       Build Develop the CNC manualpart program for 2D Profile and 3,2       Develop understand         CO-FO Mapping:         CO       Col CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03 CO1 1 2 2 1 2 1 2 1 2 1 1 1 1 1 2 1 1 1 1                                                                                                                   | Course                                                                                       | Course Pre-Requisite: Knowledge of Machine drawing, isometric &orthographic projection |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| Course Description:Under this course the student will be introduced to the principles of parametric design using computer aided design software. Students will construct 3 models and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.         Course Objectives:         1.       To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2.       To Construct surface models of parts using CAD software         3.       Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4.       To Build 2D projections from 3D models and assemblies         5.       ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be Bloom's Cognitive able to         CO       Rafter the completion of the course the student should be gover able and measure its physical properties.         CO       Build 3D assemblies withappropriate assembly approach and 2D 3 Build projections using CAD software.         CO2       Build 3D assemblies withappropriate assembly approach and 2D 3 Build projections using CAD software.         CO2       Build 3D assemblies of CAE.         CO3       Develop the CNC manualpart program for 2D Profile and 3,2 Develop Understand concepts of CAE.                                                                                                      | and CNC machines is essential.                                                               |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| parametric design using computer aided design software. Students will construct 3 models<br>and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling,<br>Drafting and Assembly modeling and kinematics, Students will also learn Manual part<br>programming and CAM.<br>Course Objectives:<br>1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.<br>2. ToConstruct surface models of parts using CAD software<br>3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly<br>approach<br>4. To Build 2D projections from 3D models and assemblies<br>5. ToDevelop the CNC part program by using manual programming and CAM software.<br>Course Learning Outcomes:<br>CO After the completion of the course the student should be Bloom's Cognitive<br>able to<br>1. Construct 3D solid and surface Models of parts using CAD<br>3. Construct<br>CO1 Construct 3D solid and surface Models of parts using CAD<br>3. Construct<br>CO2 Build 3D assemblies withappropriate assembly approach and 2D<br>3. Build<br>CO3 Develop the CNC manualpart program for 2D Profile and<br>3.2 Develop<br>1. CO4 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03<br>CO1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                        | Course Description:Under this course the student will be introduced to the principles of     |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.         Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2       Build 3D assemblies withappropriate assembly approachand 2D 3       Build         CO3       Develop the CNC manualpart program for 2D Profile and 3,2       Develop Understand         Coord CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO11       Ps01       Ps02       Ps03         CO2       1       2       1       2       1       2       1       2       1       2       1       2       1                                                                                                                                                                                                                                                                                | parametric design using computer aided design software. Students will construct 3 models     |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| Drafting and Assembly modeling and kinematics, Students will also learn Manual part programming and CAM.         Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2       Build 3D assemblies withappropriate assembly approach and 2D 3       Build         CO1         CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03         CO1         CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03         CO1         CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03         CO1       1       2       1         CO1       CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03         CO1       CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03         CO1       CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03                                                                                                                                                                                                                                                                                                                                                        | and surfaces. Topics will include sketching, constraining, solid modeling, surface modeling, |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| programming and CAM.         Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2         Build 3D assemblies withappropriate assembly approach and 2D 3       Build         CO3       Develop the CNC manualpart program for 2D Profile and 3,2         Develop the CNC manualpart program for 2D Profile and 3,2         Understand         CO CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO11       PS01       PS02       PS03         CO CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO1                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drafting and Assembly modeling and kinematics, Students will also learn Manual part          |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct of the course the student should be able to the projections using CAD software.         CO2       Build 3D assemblies withappropriate assembly approachand 2D aprojections using CAD software.       3       Build         CO3       Develop the CNC manualpart program for 2D Profile and approach and concepts of CAE.       3,2       Develop Understand         Co CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03 CO1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | programming and CAM.                                                                         |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| Course Objectives:         1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be Bloom's Cognitive able to         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2       Build 3D assemblies withappropriate assembly approachand 2D 3       Build projections using CAD software.         CO2       Build 3D assemblies withappropriate assembly approachand 2D 3       Build projections using CAD software.         CO3       Develop the CNC manualpart program for 2D Profile and 3,2       Develop Understand         Co Co1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03 CO1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| 1. To Construct 3D solid Models of parts using CAD software and measure its physical properties.         2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2       Build 3D assemblies withappropriate assembly approach and measure its physical properties.       3       Construct         CO2       Build 3D assemblies withappropriate assembly approach and 2D 3       Build       Build         CO3       Develop the CNC manualpart program for 2D Profile and 3,2       Develop Understand         CO CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03         CO1       1       2       1       2         CO2       1       1       1       2       1       2         CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS02       PS03                                                                                                                                                                                                                                                                                                                           | Course                                                                                       | Course Objectives:                                                                     |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| 2. ToConstruct surface models of parts using CAD software         3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2       Build 3D assemblies withappropriate assembly approachand 2D projections using CAD software.       3       Build projections using CAD software.         CO3       Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.       3,2       Develop Understand         CO-CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS01       PS02       PS03         CO1       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1 <td>1. To (</td> <td>Constr</td> <td>uct 3D</td> <td>solid</td> <td>Model</td> <td>s of pa</td> <td>rts usi</td> <td>ng CA</td> <td>D soft</td> <td>ware a</td> <td>nd meas</td> <td>ure its</td> <td>physic</td> <td>al prop</td> <td>perties.</td>                                                                                                                   | 1. To (                                                                                      | Constr                                                                                 | uct 3D           | solid        | Model      | s of pa        | rts usi | ng CA   | D soft             | ware a  | nd meas   | ure its | physic   | al prop | perties. |
| 3. Tobuild 3D assemblies using CAD software taking into consideration appropriate assembly approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         C0       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         C1       Construct 3D solid and surface Models of parts using CAD software and measure its physical properties.       3       Construct         C02       Build 3D assemblies withappropriate assembly approachand 2D projections using CAD software.       3       Build projections using CAD software.         C03       Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.       3,2       Develop Understand         CO-PO Mapping:         C0       C01       C02       C03       C04       C05       C06       C07       C08       C09       C011       PS01       PS02       PS03         C01       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1 <t< td=""><td>2. ToC</td><td>Constru</td><td>ict sur</td><td>face m</td><td>nodels</td><td>of part</td><td>s using</td><td>g CAD</td><td>softwa</td><td>are</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                  | 2. ToC                                                                                       | Constru                                                                                | ict sur          | face m       | nodels     | of part        | s using | g CAD   | softwa             | are     |           |         |          |         |          |
| approach         4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be able to       Bloom's Cognitive level Descriptor         C01       Construct 3D solid and surface Models of parts using CAD 3 Construct software and measure its physical properties.       3       Construct         C02       Build 3D assemblies withappropriate assembly approachand 2D 3 projections using CAD software.       3       Build         C03       Develop the CNC manualpart program for 2D Profile and oncepts of CAE.       3,2       Develop Understand         CO-PO Mapping:         C02       1       2       1       2       1         C03       1       1       3       1       2       1         Co-Coi       Coi                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3. Tob                                                                                       | ouild 3                                                                                | D asse           | mblies       | using      | CAD            | softwa  | re taki | ng into            | o consi | deration  | approp  | priate a | assemb  | oly      |
| 4. To Build 2D projections from 3D models and assemblies         5. ToDevelop the CNC part program by using manual programming and CAM software.         Course Learning Outcomes:         CO       After the completion of the course the student should be level Descriptor         CO1       Construct 3D solid and surface Models of parts using CAD 3       Construct         CO2       Build 3D assemblies withappropriate assembly approachand 2D 3       Build projections using CAD software.       3         CO3       Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.       3,2       Develop Understand         CO-PO Mapping:         CO2       1       2       1       2       1         CO3       1       1       3       1       2       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | app:                                                                                         | roach                                                                                  | D                | :            | . <b>f</b> | 20             |         |         |                    |         |           |         |          |         |          |
| S.       Tobeverop the Crec part program by using manual programming and CAW software.         Course Learning Outcomes:       Bloom's Cognitive         CO       After the completion of the course the student should be able to       Bloom's Cognitive         CO1       Construct 3D solid and surface Models of parts using CAD software and measure its physical properties.       CO2       Build 3D assemblies with appropriate assembly approach and 2D rojections using CAD software.       Build         CO3       Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.       Develop Understand         CO-PO Mapping:       Cost Cost Cost Cost Cost Cost Cost Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. 101<br>5. Tot                                                                             | Build 2                                                                                | D pro<br>n tha ( | Jection      | is from    | orom h         | odels a | and ass | semblic<br>upl pro | es      | aina and  | ICAM    | coffw    | aro.    |          |
| CO       After the completion of the course the student should be able to       Bloom's Cognitive level         CO1       Construct 3D solid and surface Models of parts using CAD software and measure its physical properties.       3       Construct         CO2       Build 3D assemblies withappropriate assembly approachand 2D projections using CAD software.       3       Build         CO3       Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.       3,2       Develop Understand         CO-PO Mapping:       Cost Cost Cost Cost Cost Cost Cost Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Course                                                                                       | Jevelo<br>L Agr                                                                        | p the C          | Outco        | mos•       | grain t        | y usin  | g man   | uai pro            | grann   | ining and |         | Soltwa   | are.    |          |
| COAfter the completion of the course the student should be<br>able toBloom's Cognitive<br>levelCO1Construct 3D solid and surface Models of parts using CAD<br>software and measure its physical properties.3ConstructCO2Build 3D assemblies withappropriate assembly approachand 2D<br>projections using CAD software.3BuildCO3Develop the CNC manualpart program for 2D Profile and<br>understand concepts of CAE.3,2Develop<br>UnderstandCO-PO Mapping:CO212121CO3111112CO3111121CO31113112CO3111311CO31113112CO31113112CO31113112CO31113112CO31113112CO31113112CO3111121CO31111112CO31111111CO31111111CO31111111 <t< td=""><td>Course</td><td colspan="12">Course Learning Outcomes:</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Course                                                                                       | Course Learning Outcomes:                                                              |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| able tolevel DescriptorCO1Construct 3D solid and surface Models of parts using CAD<br>software and measure its physical properties.3ConstructCO2Build 3D assemblies withappropriate assembly approachand 2D<br>projections using CAD software.3BuildCO3Develop the CNC manualpart program for 2D Profile and<br>understand concepts of CAE.3,2Develop<br>UnderstandCO-PO Mapping:CO112121CO211112CO311112CO311112CO312CO311CO311CO4CO5CO6CO7CO8CO9CO10CO11PS01PS02PS03CO3111111121CO3CO3CO4CO5CO6CO7CO8CO9CO10CO11PS01PS02PS03CO311111121CO3CO3CO4CO5CO6CO7CO8CO9CO10CO11PS01PS02PS03CO311111121CO31111111CO311<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO                                                                                           | Afte                                                                                   | r the o          | compl        | letion     | of the         | e cour  | se the  | stude              | ent sh  | ould be   | e Blo   | om's     | Cogni   | tive     |
| CO1Construct 3D solid and surface Models of parts using CAD<br>software and measure its physical properties.3ConstructCO2Build 3D assemblies withappropriate assembly approachand 2D<br>projections using CAD software.3BuildCO3Develop the CNC manualpart program for 2D Profile and<br>understand concepts of CAE.3,2Develop<br>UnderstandCO-PO Mapping:CO112121CO211111CO311311CO311111CO311111CO3111311CO3111311CO3111311CO3111311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              | able                                                                                   | to               |              |            |                |         |         |                    |         |           | leve    | el D     | escrip  | tor      |
| Software and measure its physical properties.         Software and measure its physical properties.         CO2         Build 3D assemblies withappropriate assembly approachand 2D projections using CAD software.         CO3         Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.         CO-PO Mapping:         CO3         CO1       C02       C03       C04       C05       C06       C07       C08       C09       C010       C011       PS02       PS03         CO-PO Mapping:         CO2       1       1       1       1       2       1       2       1         CO2       1       1       1       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1 <td><b>CO1</b></td> <td>Cons</td> <td>truct 3</td> <td>3D sol</td> <td>id and</td> <td>d surfa</td> <td>ace M</td> <td>odels</td> <td>of par</td> <td>ts usir</td> <td>ng CAE</td> <td>) 3</td> <td></td> <td>Cons</td> <td>truct</td>                                                                                                                                                                                                                                                                                                                                                                                                 | <b>CO1</b>                                                                                   | Cons                                                                                   | truct 3          | 3D sol       | id and     | d surfa        | ace M   | odels   | of par             | ts usir | ng CAE    | ) 3     |          | Cons    | truct    |
| CO2Build 3D assemblies withappropriate assembly approach and 2D<br>projections using CAD software.3BuildCO3Develop the CNC manualpart program for 2D Profile and<br>understand concepts of CAE. $3,2$ Develop<br>UnderstandCO-PO Mapping:CO CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8 CO9 CO10 CO11 PS01 PS02 PS03<br>CO1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | softw                                                                                  | vare an          | d meas       | sure its   | s physi        | cal pro | perties | <u>s.</u>          |         |           |         |          | Colls   | liuot    |
| CO3         Develop the CNC manualpart program for 2D Profile and understand concepts of CAE.         3,2         Develop Understand           CO-PO Mapping:         CO         CO1         CO2         CO3         CO4         CO5         CO6         CO7         CO8         CO9         CO10         CO11         PS01         PS02         PS03           CO1         1         2         1         2         1         2         1         2         1           CO2         1         1         1         1         1         1         2         1           CO3         1         1         1         3         1         1         2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>CO2</b>                                                                                   | Build                                                                                  | 1 3D a           | ssembl       | lies wi    | thappr         | opriate | e assen | nbly ap            | oproac  | hand 2E   | 3       |          | Bui     | ild      |
| CO3       Develop the circe manualpart program for 2D frome and 3,2       Develop Understand         OPENerop the circe manualpart program for 2D frome and 3,2         Understand         CO-PO Mapping:         CO       CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS01       PS02       PS03         CO1       1       2       1       2       1       1       2       1         CO2       1       1       1       1       1       2       1       2       1       2       1         CO3       1       1       3       1       1       2       1       2       1       1       2       1       1       2       1       1       1       2       1       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       1 </td <td><u> </u></td> <td>Deve</td> <td>lon th</td> <td>using one CN</td> <td>CADS</td> <td>nualpa</td> <td>rt pro</td> <td>aram</td> <td>for 2</td> <td>D Dro</td> <td>file and</td> <td>4</td> <td></td> <td>Deve</td> <td>alon</td>                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                     | Deve                                                                                   | lon th           | using one CN | CADS       | nualpa         | rt pro  | aram    | for 2              | D Dro   | file and  | 4       |          | Deve    | alon     |
| CO-PO Mapping:       CO       CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS01       PS02       PS03         CO1       1       2       1       2       0       0       1       2       0         CO2       1       1       1       0       0       1       2       0         CO3       1       1       3       0       0       1       2       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              | under                                                                                  | rstand           | concer       | ots of (   | Tuaipa<br>CAE. | it pro  | gram    | 101 21             |         | ine alle  | 3,2     | 2        | Under   | stand    |
| CO-PO Mapping:         CO       CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS01       PS02       PS03         CO1       1       2       1       2           1       2           CO2       1       1       1            1       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                        | 2                |              |            |                |         |         |                    |         |           |         | 1        | 2       |          |
| CO-ro mapping:         CO       CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS01       PS02       PS03         CO1       1       2       1       2       -       -       -       1       2       -         CO2       1       1       1       -       -       -       1       2       -         CO3       1       1       3       -       -       1       2       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                              | ) Ma-                                                                                  | nina             |              |            |                |         |         |                    |         |           |         |          |         |          |
| CO       CO1       CO2       CO3       CO4       CO5       CO6       CO7       CO8       CO9       CO10       CO11       PS01       PS02       PS03         CO1       1       2       1       2          1       2           CO2       1       1       1       1          1       2           CO3       1       1       3          1       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO-PC                                                                                        | ) wiap                                                                                 | ping:            |              |            |                |         |         |                    |         |           |         |          |         |          |
| CO1       1       2       1       2       1       2       1         CO2       1       1       1       1       1       2       1         CO3       1       1       3       1       1       2       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO                                                                                           | CO1                                                                                    | CO2              | CO3          | CO4        | C05            | CO6     | CO7     | CO8                | CO9     | CO10      | CO11    | PS01     | PS02    | PS03     |
| CO2         1         1         1         1         2         1           CO3         1         1         3         1         1         2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C01                                                                                          | 1                                                                                      |                  | 2            | 1          | 2              |         |         |                    |         |           | 1       | 2        |         |          |
| CO3         1         1         3         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO2                                                                                          | 1                                                                                      |                  | 1            | 1          | 1              |         |         |                    |         |           | 1       | 2        |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO3                                                                                          | 1                                                                                      |                  | 1            |            | 3              |         |         |                    |         |           | 1       | 2        |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                        |                  |              |            |                |         |         |                    |         |           |         |          |         |          |
| Assessments :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Assess                                                                                       | ments                                                                                  | •                |              |            |                |         |         |                    |         |           |         |          |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Teache                                                                                       | er Ass                                                                                 | essme            | ent:         |            |                |         |         |                    |         |           |         |          |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Teache                                                                                       | er Ass                                                                                 | essme            | ent:         |            |                |         |         |                    |         |           |         |          |         |          |

| Assessment                                                                         | Marks |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|
| ISE                                                                                | 50    |  |  |  |  |  |  |  |
| ISE and have done and the informed (Oriz/Mini Drainstanian d) Dragantation (Crosse |       |  |  |  |  |  |  |  |

ISE are based on practical performed/ Quiz/ Mini-Projectassigned/ Presentation/ Group Discussion/ Internal oral etc.

| Course Contents:                                                                |        |
|---------------------------------------------------------------------------------|--------|
| 1:Introduction to CAD: Need for implementing CAD, Application and benefits      | 6 Hrs. |
| of CAD, Hardware Requirements, Different Software packages used for 3D          |        |
| Modeling.                                                                       |        |
| 2:Sketching& Solid Modeling:                                                    | 7Hrs.  |
| 2D sketching of elements like line, circle, arc, spline etc. Dimensioning these |        |

| elements, Geometrical constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|--|--|
| Solid Modeling: Concept of Feature based and parametric modeling Basic and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |  |  |  |  |  |  |  |  |  |
| advanced modeling features.Import and export of 3D solid models between two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |  |  |  |  |  |  |  |  |  |
| different software packages. Physical properties like volume, surface area, center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |  |  |  |  |  |  |  |  |  |
| of gravity etc of solid model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |  |  |  |  |  |  |  |  |  |
| 3: Basic Surface Modeling: Concept of surface modeling. Basic modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 Hrs                                        |  |  |  |  |  |  |  |  |  |
| features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |  |  |  |  |  |  |  |  |  |
| Assembly Modeling: Concept of Bottom up and top down approach, Building two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |  |  |  |  |  |  |  |  |  |
| composite assemblies of components (consisting at least five components) along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |  |  |  |  |  |  |  |  |  |
| with all relevant details, Exploded Views using assembly features in any suitable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |  |  |  |  |  |  |  |  |  |
| 3D modeling software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |  |  |  |  |  |  |  |  |  |
| 4:Generation of 2D Drawings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 Hrs.                                       |  |  |  |  |  |  |  |  |  |
| Generation of Orthographic views of individual components required for shop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |  |  |  |  |  |  |  |  |  |
| floor [working drawings] from 3D model which will include all relevant views like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |  |  |  |  |  |  |  |  |  |
| front, side, top, bottom views, sectional views, dimensioning, dimensional and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |  |  |  |  |  |  |  |  |  |
| geometrical tolerances etc. Generation of title block in sheet. Orthographic views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |  |  |  |  |  |  |  |  |  |
| of assembly drawings, generation of Bill of Materials (BOM). Plotting of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |  |  |  |  |  |  |  |  |  |
| drawings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |  |  |  |  |  |  |  |  |  |
| 5. Computer Aided Manufacturing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 Hrs.                                       |  |  |  |  |  |  |  |  |  |
| a) Part Programming: Introduction to manual part programming, use of G and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • ••                                         |  |  |  |  |  |  |  |  |  |
| codes to generate manual part program. Introduction to data exchange formats.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |  |  |  |  |  |  |  |  |  |
| Demonstration of integration of CAD/CAM software to generate tool path using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |  |  |  |  |  |  |  |  |  |
| suitable software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |  |  |  |  |  |  |  |  |  |
| 6 Introduction to CAE Applications: Concept of CAE Concept of EEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 Hrs                                        |  |  |  |  |  |  |  |  |  |
| advantages and limitations of CAE applications of CAE in mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01115                                        |  |  |  |  |  |  |  |  |  |
| advantages and minitations of CAE, applications of CAE in incentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |  |  |  |  |  |  |  |  |  |
| <b>Matlab:</b> advantages and limitations of MATLAD applications of MATLAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |  |  |  |  |  |  |  |  |  |
| Wallab. advantages and minitations of WATEAD, applications of WATEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |  |  |  |  |  |  |  |
| Text De alver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |  |  |  |  |  |  |  |  |  |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |  |  |  |  |  |  |  |  |  |
| 1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ition.                                       |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ition.                                       |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ition.                                       |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ition.                                       |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE",N.K.Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ition.<br>7 Age                              |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi, 2000.</li> <li>Reference books:</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ition.<br>7 Age                              |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> <li>Reference books:</li> <li>1. Various 3D modeling Software Manuals.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion.                                        |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi<br/>2. "CAD/CAM/CAE",N.K.Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.<br/>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New<br/>International (P) Ltd, New Delhi,2000.</li> <li>Reference books:         <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion.<br>Age                                 |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> <li>Reference books:         <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                       | ition.                                       |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> <li>Reference books:         <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> <li>"Mastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (200)</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                           | 7).                                          |  |  |  |  |  |  |  |  |  |
| <ol> <li>Text Books:</li> <li>"CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>"CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> <li>Reference books:         <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> <li>"Mastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (2005).</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                             | 7 Age                                        |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE", N.K. Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> <li>Reference books:         <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> <li>"Mastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (2005.</li> <li>"Machine Drawing", N. Siddheshwar, P. Kannaiah, V V S Sastry, Tata McGraw Hill Publications, 2nd Edition.</li> </ol> </li> </ol>                                                                                                                                                                                       | ition.<br>7 Age<br>17).                      |  |  |  |  |  |  |  |  |  |
| <ol> <li>1) "CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi</li> <li>2. "CAD/CAM/CAE",N.K.Chougule, SciTech Publication, Revised Edition.</li> <li>3. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.</li> <li>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New International (P) Ltd, New Delhi,2000.</li> <li><b>Reference books:</b> <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> <li>"Mastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (2005).</li> <li>"Machine Drawing", N. Siddheshwar, P. Kannaiah, V V S Sastry, Tata McGraw Hill Publications, 2nd Edition.</li> <li>"CAM/CAM – Theory and Practice", Ibrahim Zeid, R. Sivasubramaniam, Tata McGraw Edition.</li> </ol> </li> </ol>                                                                                        | 7).<br>Hill,2nd                              |  |  |  |  |  |  |  |  |  |
| <ol> <li>(CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi<br/>2. "CAD/CAM/CAE",N.K.Chougule, SciTech Publication, Revised Edition.</li> <li>Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.<br/>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New<br/>International (P) Ltd, New Delhi,2000.</li> <li><b>Reference books:</b> <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> <li>"Mastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (2005).</li> <li>"Machine Drawing", N. Siddheshwar, P. Kannaiah, V V S Sastry, Tata McGraw Hill<br/>Publications, 2nd Edition.</li> <li>"CAM/CAM – Theory and Practice", Ibrahim Zeid, R. Sivasubramaniam, Tata McGraw<br/>Edition.</li> </ol> </li> </ol>                                                                                            | 7 Age<br>77).<br>Hill,2nd                    |  |  |  |  |  |  |  |  |  |
| <ol> <li>(CAD/CAM- Principals and Applications", P.N. Rao, Tata McGraw Hill, 2nd Edi<br/>2. "CAD/CAM/CAE",N.K.Chougule, SciTech Publication, Revised Edition.</li> <li>Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007 4.<br/>Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New<br/>International (P) Ltd, New Delhi,2000.</li> <li><b>Reference books:</b> <ol> <li>Various 3D modeling Software Manuals.</li> <li>CNC Programming manual.</li> <li>"Machine Drawing", N. D. Bhatt and V.M. Panchal, Charoter Publications</li> <li>"Mastering CAD CAM", Ibrahim Zeid, Tata McGraw-Hill, Special Indian Edition, (2005).</li> <li>"Machine Drawing", N. Siddheshwar, P. Kannaiah, V V S Sastry, Tata McGraw Hill<br/>Publications, 2nd Edition.</li> <li>"CAM/CAM – Theory and Practice", Ibrahim Zeid, R. Sivasubramaniam, Tata McGraw<br/>Edition.</li> <li>"CAD/CAM – Concepts and applications", Chennakesava R. Alavala – Prentice Hall of</li> </ol> </li> </ol> | ition.<br>7 Age<br>17).<br>Hill,2nd<br>India |  |  |  |  |  |  |  |  |  |

| Title of | the Course: QUALITY MANAGEMENT                                                                   | P           |             | Credit    |          |                    |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------|-------------|-------------|-----------|----------|--------------------|--|--|--|--|--|--|--|
| Cours    | e Code: UMEEX0692                                                                                | -           | -           |           | 3        |                    |  |  |  |  |  |  |  |
| Course   | Pre-Requisite: Knowledge on Basic Statistics                                                     |             |             |           |          |                    |  |  |  |  |  |  |  |
| Cours    | e Objectives:                                                                                    |             |             |           |          |                    |  |  |  |  |  |  |  |
| 1.       | Student should able to demonstrate to the core cond<br>Management.                               | cepts and   | the emer    | ging tr   | ends i   | n Quality          |  |  |  |  |  |  |  |
| 2.       | 2. Student should able develop hands-on-skills on tools and techniques of Quality management for |             |             |           |          |                    |  |  |  |  |  |  |  |
| 3        | Industrial problem-solving.<br>To student should able to demonstrate implementation a            | and docum   | pentation r | equiren   | nents f  | or Quality system  |  |  |  |  |  |  |  |
| 5.       | To student should able to demonstrate implementation a                                           | ind docun   |             | equiteri  |          | or Quanty system   |  |  |  |  |  |  |  |
| Cours    | e Description:                                                                                   |             |             |           |          |                    |  |  |  |  |  |  |  |
| The In   | dustry Internship Program offers students the opportun                                           | ity to gain | n practical | experi    | ence a   | nd insight into tl |  |  |  |  |  |  |  |
| profess  | sional world within their chosen field. Throughout t                                             | he interns  | ship exper  | rience,   | studen   | ts will engage     |  |  |  |  |  |  |  |
| meanir   | ngful projects, tasks, and assignments designed to dev                                           | elop indu   | ustry-speci | ific skil | lls, enl | hance profession   |  |  |  |  |  |  |  |
| compe    | tencies, and foster personal growth. Under the guidanc                                           | e of expe   | rienced m   | entors a  | and su   | pervisors, studen  |  |  |  |  |  |  |  |
| will ha  | ave the opportunity to explore various aspects of th                                             | e industr   | y, gain ex  | xposure   | to in    | dustry trends ar   |  |  |  |  |  |  |  |
| practic  | es, and contribute to organizational goals.                                                      |             |             | -         |          |                    |  |  |  |  |  |  |  |
| Cours    | e Learning Outcomes:                                                                             |             |             |           |          |                    |  |  |  |  |  |  |  |
| CO       | After the completion of the course the student show                                              | uld be ab   | le to       | E         | Bloom'   | s Cognitive        |  |  |  |  |  |  |  |
|          |                                                                                                  |             |             | Ι         | Level    | Descriptor         |  |  |  |  |  |  |  |
| CO1      | Explain the quality.                                                                             |             |             |           | Π        | Understanding      |  |  |  |  |  |  |  |
| CO2      | Make use of quality systems.                                                                     |             |             |           | III      | Apply              |  |  |  |  |  |  |  |
| CO3      | Analyse the data using statistical tools and techniques                                          |             |             |           | IV       | Analyse            |  |  |  |  |  |  |  |
| CO4      | Decide the hands on skill in problem solving, controll quality.                                  | ing and i   | mproveme    | ent of    | V        | Evaluating         |  |  |  |  |  |  |  |
|          |                                                                                                  |             |             |           |          |                    |  |  |  |  |  |  |  |

#### **CO-PO-PSO Mapping:**

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| CO1 | 2   | 2   | 2   | 1   | 2   | -   | -          | -   | -   | 2    | -    | 1    | 1    | -    |
| CO2 | 2   | 1   | 1   | 1   | 1   | 2   | -          | -   | -   | -    | -    | -    | 2    | -    |
| CO3 | 3   | 2   | 1   | 2   | -   | -   | -          | -   | -   | -    | -    | 2    | -    | -    |
| CO4 | 2   | 2   | 3   | 2   | 2   | -   | -          | 1   | 1   | 2    | -    | -    | 2    | -    |

#### **Teacher Assessment:**

| Assessment | Marks |
|------------|-------|
| ISE        | 50    |

| Course Content:                                                                                                                                                                                                                                |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Unit -I                                                                                                                                                                                                                                        | 6 |
| introduction to quality management, instorical background, contribution by quality gurus.                                                                                                                                                      |   |
| Unit-II                                                                                                                                                                                                                                        | 9 |
| Quality Planning: Designing for quality, capturing voice of customer, quality function deployment, quality loss function, signal to noise ratio, parameter design and optimization, tolerance design.                                          |   |
| Unit-III                                                                                                                                                                                                                                       | 7 |
| Organizing for quality:, Quality systems: ISO9001 and TS 16949, Control of Non-conforming products, certification requirements, introduction to ISO 14000.                                                                                     |   |
| Unit-IV                                                                                                                                                                                                                                        | 8 |
| Quality Control: Stages of inspection, Acceptance sampling plans, Product vs. Process control, Statistical quality control, Variable (Xbar –R) and Attribute (p, np, c and u) charts, Introduction to basic seven tools of quality control.    |   |
| Unit-V                                                                                                                                                                                                                                         | 9 |
| Quality Improvement: Single parameter experiments, Orthogonal array, Analysis of Means, Analysis of Variance ANOVA (one - way), Statistical inferences, Variance reduction, Process capability, Correlation analysis, Linear regression models |   |
| Unit-VI                                                                                                                                                                                                                                        | 6 |
| Introduction to Six Sigma methodology, D-M-A-I-C approach. Reliability, availability and Maintainability (RAM) approach                                                                                                                        |   |

#### **TEXT BOOKS**

- 1. Armand V. Feigenbaum, Total Quality Control, McGraw Hill Inc. New York
- 2. J. M. Juran, F. M. Gryna, Quality Planning and Analysis, Tata McGraw Hill Publishing Co., New Delhi
- 3. E. Grant, R. Leavenworth, Statistical Quality Control, McGraw Hill International Book Co.
- 4. John Hardesky, Total Quality Management Handbook, McGraw Hill Inc.
- 5. D. H. Besterfield, Total Quality Management, Pearson Education
- 6. Logothetis, Managing for Total Quality, PHI Publication

#### **REFERENCE BOOKS**

- 1. Genichi Taguchi, Quality Engineering in Production Systems, McGraw Hill
- 2. John M. Ryan, Total Quality Control, Tata McGraw Hill Publishing Co.
- 3. P. F. Wilson, L.D. Dell & L.F. Anderson, Root Cause Analysis, A Tool for Total
- 4. Quality Management, Tata McGraw Hill Publishing Co.
- 5. Montgomery D (2004). Introduction to Statistical Quality Control, 5/e, (John Wiley & Sons)

| Title of the Course: Vocational Training               | L           | Т           | Р        | Credit          |
|--------------------------------------------------------|-------------|-------------|----------|-----------------|
| Course Code: UMEEX0693                                 | -           | -           | 4        | 2               |
| Course Pre-Requisite: Students should be able to commu | inicate eff | fectively a | and work | well in a team. |

She/he should be able to demonstrate professional, reliable and a strong work ethic, this includes being punctual, taking initiative and being able to manage time effectively.

#### **Course Objectives:**

- 1. To apply theoretical knowledge gained in the classroom to real world industry (Hands on experience.)
- 2. To develop professional skills such as communication, teamwork, time management, problem-solving and adaptability (Professional Development).
- 3. To expose students to the operations, practices and culture of a specific industry.

#### **Course Description:**

The Industry Internship Program offers students the opportunity to gain practical experience and insight into the professional world within their chosen field. Throughout the internship experience, students will engage in meaningful projects, tasks, and assignments designed to develop industry-specific skills, enhance professional competencies, and foster personal growth. Under the guidance of experienced mentors and supervisors, students will have the opportunity to explore various aspects of the industry, gain exposure to industry trends and practices, and contribute to organizational goals.

#### **Course Learning Outcomes:**

| CO  | After the completion of the course the student should be able to                               | Bloom's Cognitive |               |  |  |
|-----|------------------------------------------------------------------------------------------------|-------------------|---------------|--|--|
|     |                                                                                                | Level             | Descriptor    |  |  |
| CO1 | <b>Apply</b> theoretical concepts and academic knowledge gained in the classroom to practical. | III               | Applying      |  |  |
| CO2 | Develop industry specific skills such as technical skills, research skills,                    | V                 | Creating      |  |  |
|     | analytical skills, or communication skills.                                                    | Ι                 |               |  |  |
| CO3 | Interpret effectively through various channels, such as written reports, oral                  | II                | Understanding |  |  |
|     | presentation, emails or meetings                                                               |                   |               |  |  |
| CO4 | Demonstrate overall growth and development as a professional integrating                       | II                | Understanding |  |  |
|     | academic knowledge, practical skills, and personal qualities to succeed in                     |                   |               |  |  |
|     | future career endeavors within the industry                                                    |                   |               |  |  |

#### **CO-PO-PSO Mapping:**

| СО         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO<br>3 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|----------|
| CO1        | 3   |     | 2   |     |     |     |     |     |     |      |      |      | 3    | 2    |          |
| CO2        | 3   | 3   | 3   |     |     |     |     |     |     |      |      |      | 3    | 3    |          |
| <b>CO3</b> |     |     |     |     |     |     |     |     |     | 3    | 2    |      |      |      | 2        |
| <b>CO4</b> | 2   | 2   | 2   |     |     | 3   |     |     | 2   | 2    | 2    |      | 2    | 2    | 2        |
#### Assessments : Teacher Assessment:

| i cucher i issessimente |       |
|-------------------------|-------|
| Assessment              | Marks |
| ISE                     | 50    |
|                         |       |

#### **Course Contents:**

As per the approved academic structure, students have to undergo an internships for a duration of **Two Weeks** in an Mechanical Engineering Industry. Student will have to submit a Valid Company certificate of internship completion.

The department holds the final authority to accept or reject the internship offered to students. Department will check the credibility of the organization offering the internship to students. If the department finds the internship is unworthy, then students will not be allowed to join the organization.

# **Guidelines for Internship**

## 1. Orientation and company Introduction

Introduction to the host company, its mission, values, and organizational structure. Overview of the departments relevant to mechanical engineering. Familiarization with safety protocols, facilities, and resources.

## 2. Departmental Rotation

Rotations through different departments or teams within the company. Exposure to various functions such as marketing, operations, research and development, finance, etc. Observe daily tasks, workflows, and project management processes.

## 3. Project Assignments:

Assignments aligned with the intern's field of study or interests. Real-world projects with defined objectives, deliverables, and timelines. Opportunities to work independently or collaborate with teams on cross-functional projects.

## 4. Mentorship and Guidance:

Assignment of a mentor or supervisor to provide guidance, support, and feedback. Regular check-ins and one-on-one meetings to discuss progress, challenges, and learning goals. Opportunities for skill development, and professional networking.

# 5. Final Presentation and Report:

Culminating presentation and report showcasing the intern's accomplishments, projects, and key leanings. Presentation to company executives, department heads, and/or internship college mentor. Recommendations for improvements or insights gained during the internship.